cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A106665 Alternate paper-folding (or alternate dragon curve) sequence.

Original entry on oeis.org

1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1
Offset: 0

Views

Author

Duane K. Allen (computeruser(AT)sprintmail.com), May 13 2005

Keywords

Comments

Regular dragon curve (A014577) sequence results from repeated folding of long strip of paper in half in the same direction, say right to left. This alternate dragon curve sequence results from repeated folding of long strip of paper in half in alternating directions, right to left, then left to right and so forth.
In the Wikipedia article "Dragon Curve" note the illustrated description under the heading "[Un]Folding the Dragon" and note that the 1's and 0's in the A106665 description correspond to the L and R folds in the Wikipedia discussion. - Robert Munafo, Jun 03 2010

Examples

			1 + x^3 + x^4 + x^5 + x^8 + x^12 + x^13 + x^15 + x^16 + x^19 + x^20 + ...
		

References

  • M. Gardner, "The Dragon Curve and Other Problems (Mathematical Games)", Scientific American, 1967, columns for March, April, July.
  • M. Gardner, "Mathematical Magic Show" (contains the dragon curve columns).
  • D. E. Knuth, "Art of Computer Programming," vol. 2, 3rd. ed., "Seminumerical > Algorithms," (section 4.1)

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember;
          `if`(irem(n, 4)=0, 1, `if`(irem(n, 2)=1, 1-a((n-1)/2), 0))
        end:
    seq(a(n), n=0..120);  # Alois P. Heinz, Mar 10 2012
  • Mathematica
    a[n_] := a[n] = Switch[Mod[n, 4], 0, 1, 2, 0, _, 1-a[(n-1)/2]];
    Table[a[n], {n, 0, 120}] (* Jean-François Alcover, Mar 15 2017 *)
  • PARI
    {a(n) = n++; if( n==0, 0, v = valuation( n, 2); (n/2^v\2 + v+1) %2 )} /* Michael Somos, Mar 10 2012 */
    
  • Python
    def A106665(n): return ((n+1>>(m:=(~(n+1)&n).bit_length()))+1>>1)+m&1 # Chai Wah Wu, Feb 25 2025

Formula

For n >= 0, a(4n) = 1, a(4n+2) = 0, a(2n+1) = 1 - a(n).
(-1)^a(n) = -A034947(n+1) * (-1)^A096268(n). - Alec Edgington (alec(AT)obtext.com), Aug 02 2010
-(-1)^a(n) = A209615(n+1). - Michael Somos, Mar 10 2012
G.f.: 1/(1 - x^4) + Sum_{k>=1} x^(2*((-1 - (-2)^(k - 1)) mod 2^(k + 1)) + 1)/(1 - x^(2^(k + 2))). - Miles Wilson, Nov 18 2024

Extensions

Edited by N. J. A. Sloane, Jun 04 2010 to include material from discussions on the Sequence Fans Mailing List.