cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A106666 Expansion of g.f. (1-4*x^2+2*x^3)/((1-x)*(1-2*x-2*x^2+2*x^3)).

Original entry on oeis.org

1, 3, 5, 13, 29, 73, 177, 441, 1089, 2705, 6705, 16641, 41281, 102433, 254145, 630593, 1564609, 3882113, 9632257, 23899521, 59299329, 147133185, 365065985, 905799681, 2247464961, 5576397313, 13836125185, 34330115073, 85179685889
Offset: 0

Views

Author

Creighton Dement, May 13 2005

Keywords

Comments

Floretion Algebra Multiplication Program, FAMP Code: 1vesseq[I*J*cyc(I)] with I = + .5'ii' + .5'kk' + .5'ik' + .5'jk' + .5'ki' + .5'kj' and J = + .5'i + .5i' - .5'ii' + .5'jj' + .5'kk' + .5e

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 50); Coefficients(R!(  (1-4*x^2+2*x^3)/((1-x)*(1-2*x-2*x^2+2*x^3)) )); // G. C. Greubel, Sep 08 2021
    
  • Mathematica
    LinearRecurrence[{3,0,-4,2},{1,3,5,13},30] (* Harvey P. Dale, Jul 28 2015 *)
  • SageMath
    def A106666_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( (1-4*x^2+2*x^3)/((1-x)*(1-2*x-2*x^2+2*x^3)) ).list()
    A106666_list(50) # G. C. Greubel, Sep 08 2021

Formula

Superseeker results: a(n+1) - a(n) = A052970(n+2); a(n+2) - a(n) = A052987(n+2).
a(0)=1, a(n) = 2*A077937(n-1) + 1.