A106727 Triangle T(n,k) = (f(n+1)*f(k+1) mod 10), where f(j) = 10 - (prime(j+3) mod 10), read by rows.
9, 7, 1, 1, 3, 9, 9, 7, 1, 9, 3, 9, 7, 3, 1, 1, 3, 9, 1, 7, 9, 3, 9, 7, 3, 1, 7, 1, 7, 1, 3, 7, 9, 3, 9, 1, 9, 7, 1, 9, 3, 1, 3, 7, 9, 7, 1, 3, 7, 9, 3, 9, 1, 7, 1, 1, 3, 9, 1, 7, 9, 7, 3, 1, 3, 9, 9, 7, 1, 9, 3, 1, 3, 7, 9, 7, 1, 9, 1, 3, 9, 1, 7, 9, 7, 3, 1, 3, 9, 1, 9
Offset: 0
Examples
Triangle begins: 9; 7, 1; 1, 3, 9; 9, 7, 1, 9; 3, 9, 7, 3, 1; 1, 3, 9, 1, 7, 9; 3, 9, 7, 3, 1, 7, 1;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Programs
-
Mathematica
f[n_]:= 10 - Mod[Prime[n+3], 10]; Table[Mod[f[n+1]*f[k+1], 10], {n,0,15}, {k,0,n}]//Flatten
-
Sage
def f(n): return 10 - (nth_prime(n+3)%10) def A106727(n,k): return (f(n+1)*f(k+1))%10 flatten([[A106727(n,k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Sep 10 2021
Formula
T(n, k) = (f(n+1)*f(k+1) mod 10) where f(j) = 10 - (prime(j+3) mod 10).