A106732 Expansion of -3*x/(1 - 5*x + 3*x^2).
0, -3, -15, -66, -285, -1227, -5280, -22719, -97755, -420618, -1809825, -7787271, -33506880, -144172587, -620342295, -2669193714, -11484941685, -49417127283, -212630811360, -914902674951, -3936620940675, -16938396678522, -72882120570585
Offset: 0
Links
Crossrefs
Cf. A116415.
Programs
-
Magma
[n le 2 select -3*(1+(-1)^n)/2 else 5*Self(n-1) - 3*Self(n-2): n in [1..31]]; // G. C. Greubel, Sep 10 2021
-
Maple
a[0]:=0: a[1]:=-3: for n from 2 to 22 do a[n]:=5*a[n-1]-3*a[n-2] od: seq(a[n], n=0..30);
-
Mathematica
LinearRecurrence[{5,-3}, {0,-3}, 31] (* G. C. Greubel, Sep 10 2021 *) CoefficientList[Series[-3x/(1-5x+3x^2),{x,0,30}],x] (* Harvey P. Dale, Jan 29 2025 *)
-
Sage
[-3^((n+1)/2)*chebyshev_U(n-1, 5/(2*sqrt(3))) for n in (0..30)] # G. C. Greubel, Sep 10 2021
Formula
G.f.: -3*x/(1 - 5*x + 3*x^2).
a(n) = 5*a(n-1) - 3*a(n-2), a(0) = 0, a(1) = -3.
a(n) = -3*A116415(n-1), n>0.
a(n) = -3^((n+1)/2)*ChebyshevU(n-1, 5/(2*sqrt(3))). - G. C. Greubel, Sep 10 2021
Extensions
Edited by N. J. A. Sloane, Apr 30 2006
New name by G. C. Greubel, Sep 10 2021