A106740 Triangle read by rows: greatest common divisors of pairs of Fibonacci numbers greater than 1: T(n, k) = gcd(Fibonacci(n), Fibonacci(k)).
2, 1, 3, 1, 1, 5, 2, 1, 1, 8, 1, 1, 1, 1, 13, 1, 3, 1, 1, 1, 21, 2, 1, 1, 2, 1, 1, 34, 1, 1, 5, 1, 1, 1, 1, 55, 1, 1, 1, 1, 1, 1, 1, 1, 89, 2, 3, 1, 8, 1, 3, 2, 1, 1, 144, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 233, 1, 1, 1, 1, 13, 1, 1, 1, 1, 1, 1, 377, 2, 1, 5, 2, 1, 1, 2, 5, 1, 2, 1, 1, 610
Offset: 3
Examples
Triangle begins as: 2; 1, 3; 1, 1, 5; 2, 1, 1, 8; 1, 1, 1, 1, 13; 1, 3, 1, 1, 1, 21; 2, 1, 1, 2, 1, 1, 34; 1, 1, 5, 1, 1, 1, 1, 55; 1, 1, 1, 1, 1, 1, 1, 1, 89; 2, 3, 1, 8, 1, 3, 2, 1, 1, 144; 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 233; 1, 1, 1, 1, 13, 1, 1, 1, 1, 1, 1, 377; 2, 1, 5, 2, 1, 1, 2, 5, 1, 2, 1, 1, 610;
Links
- G. C. Greubel, Rows n = 3..52 of the triangle, flattened
Programs
-
Mathematica
T[n_, k_]:= GCD[Fibonacci[n], Fibonacci[k]]; Table[T[n, k], {n,3,18}, {k,3,n}]//Flatten (* G. C. Greubel, Sep 11 2021 *)
-
Sage
def T(n,k): return gcd(fibonacci(n), fibonacci(k)) flatten([[T(n,k) for k in (3..n)] for n in (3..18)]) # G. C. Greubel, Sep 11 2021
Formula
T(n, 3) = abs(A061347(n)).
T(n, 4) = A093148(n-1).
T(n, n) = A000045(n).
From G. C. Greubel, Sep 11 2021: (Start)
T(n, 3) = A131534(n-2).
T(n, 5) = A060904(n).
T(n, 6) = A010125(n).
T(n, n-1) = T(n, n-2) = A000012(n).
T(n, n-3) = A093148(n-5).
T(n, n-4) = A093148(n-5).
T(n, n-5) = A060904(n-5).
T(n, n-6) = A010125(n-6). (End)