cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A106740 Triangle read by rows: greatest common divisors of pairs of Fibonacci numbers greater than 1: T(n, k) = gcd(Fibonacci(n), Fibonacci(k)).

Original entry on oeis.org

2, 1, 3, 1, 1, 5, 2, 1, 1, 8, 1, 1, 1, 1, 13, 1, 3, 1, 1, 1, 21, 2, 1, 1, 2, 1, 1, 34, 1, 1, 5, 1, 1, 1, 1, 55, 1, 1, 1, 1, 1, 1, 1, 1, 89, 2, 3, 1, 8, 1, 3, 2, 1, 1, 144, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 233, 1, 1, 1, 1, 13, 1, 1, 1, 1, 1, 1, 377, 2, 1, 5, 2, 1, 1, 2, 5, 1, 2, 1, 1, 610
Offset: 3

Views

Author

Reinhard Zumkeller, May 15 2005

Keywords

Examples

			Triangle begins as:
  2;
  1, 3;
  1, 1, 5;
  2, 1, 1, 8;
  1, 1, 1, 1, 13;
  1, 3, 1, 1,  1, 21;
  2, 1, 1, 2,  1,  1, 34;
  1, 1, 5, 1,  1,  1,  1, 55;
  1, 1, 1, 1,  1,  1,  1,  1, 89;
  2, 3, 1, 8,  1,  3,  2,  1,  1, 144;
  1, 1, 1, 1,  1,  1,  1,  1,  1,   1, 233;
  1, 1, 1, 1, 13,  1,  1,  1,  1,   1,   1, 377;
  2, 1, 5, 2,  1,  1,  2,  5,  1,   2,   1,   1, 610;
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_]:= GCD[Fibonacci[n], Fibonacci[k]];
    Table[T[n, k], {n,3,18}, {k,3,n}]//Flatten (* G. C. Greubel, Sep 11 2021 *)
  • Sage
    def T(n,k): return gcd(fibonacci(n), fibonacci(k))
    flatten([[T(n,k) for k in (3..n)] for n in (3..18)]) # G. C. Greubel, Sep 11 2021

Formula

T(n, k) = gcd(A000045(n), A000045(k)) for n >= 3 and 3 <= k <= n.
T(n, 3) = abs(A061347(n)).
T(n, 4) = A093148(n-1).
T(n, n) = A000045(n).
From G. C. Greubel, Sep 11 2021: (Start)
T(n, 3) = A131534(n-2).
T(n, 5) = A060904(n).
T(n, 6) = A010125(n).
T(n, n-1) = T(n, n-2) = A000012(n).
T(n, n-3) = A093148(n-5).
T(n, n-4) = A093148(n-5).
T(n, n-5) = A060904(n-5).
T(n, n-6) = A010125(n-6). (End)