cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A106789 Sum of two consecutive squares of Lucas 3-step numbers (A001644).

Original entry on oeis.org

10, 10, 58, 170, 562, 1962, 6562, 22202, 75242, 254330, 860474, 2911226, 9848050, 33316090, 112707970, 381286954, 1289885834, 4363653034, 14762129274, 49939929610, 168945571442, 571538767370, 1933501811618, 6540989771354
Offset: 0

Views

Author

Jonathan Vos Post, May 16 2005

Keywords

Comments

A106729 is sum of two consecutive squares of Lucas numbers (A001254), for which L(n)^2 + L(n+1)^2 = 5*{F(n)^2 + F(n+1)^2} = 5*A001519(n). Sum of two consecutive squares of Lucas 3-step numbers can be expressed in terms of tribonacci numbers, but not quite as neatly, as derived from the identity A001644(n) = T(n) + 2*T(n-1) + 3*T(n-2) = 3*T(n+1) - 2*T(n) - T(n-1) where the tribonacci numbers T(n) = A000073(n).

Examples

			a(0) = A001644(0)^2 + A001644(1)^2 = 3^2 + 1^2 = 9 + 1 = 10.
a(1) = A001644(1)^2 + A001644(2)^2 = 1^2 + 3^2 = 1 + 9 = 10.
a(2) = A001644(2)^2 + A001644(3)^2 = 3^2 + 7^2 = 9 + 49 = 58.
a(3) = A001644(3)^2 + A001644(4)^2 = 7^2 + 11^2 = 49 + 121 = 170 = 13^2 + 1.
		

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( 2*(5-5*x+4*x^2-18*x^3-x^4-5*x^5)/(1-2*x-3*x^2-6*x^3+x^4+x^6) )); // G. C. Greubel, Apr 21 2019
    
  • Mathematica
    CoefficientList[Series[2*(5-5*x+4*x^2-18*x^3-x^4-5*x^5)/(1-2*x-3*x^2 -6*x^3+x^4+x^6), {x,0,40}], x] (* G. C. Greubel, Apr 21 2019 *)
    Total/@Partition[LinearRecurrence[{1,1,1},{3,1,3},40]^2,2,1] (* Harvey P. Dale, Apr 03 2022 *)
  • PARI
    my(x='x+O('x^40)); Vec(2*(5-5*x+4*x^2-18*x^3-x^4-5*x^5)/(1-2*x-3*x^2-6*x^3+x^4+x^6)) \\ G. C. Greubel, Apr 21 2019
    
  • Sage
    (2*(5-5*x+4*x^2-18*x^3-x^4-5*x^5)/(1-2*x-3*x^2-6*x^3+x^4+x^6)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Apr 21 2019

Formula

a(n) = A001644(n)^2 + A001644(n+1)^2.
G.f.: 2*(5 - 5*x + 4*x^2 - 18*x^3 - x^4 - 5*x^5)/((1+x+x^2-x^3)*(1-3*x-x^2-x^3)).