A106796 Fixed point of the morphism 1 -> 1,1,2; 2 -> 3; 3 -> 1,4; 4 -> 1, starting with a(0) = 1.
1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 1, 1, 2, 3, 1, 4, 1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 1, 1, 2, 3, 1, 4, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 1, 1, 2, 3, 1, 4, 1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 1, 1, 2, 3, 1, 4, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 1, 1, 2, 3, 1, 4, 1, 1, 2, 1, 1, 2, 3
Offset: 0
Keywords
Examples
The first few steps of the substitution are: Start: 1 Maps: 1 --> 1 1 2 2 --> 3 3 --> 1 4 4 --> 1 ------------- 0: (#=1) 1 1: (#=3) 112 2: (#=7) 1121123 3: (#=16) 1121123112112314 4: (#=36) 112112311211231411211231121123141121 5: (#=82) 1121123112112314112112311211231411211121123112112314112112311211231411211121123112
Links
- G. C. Greubel, Table of n, a(n) for n = 0..10000
- Victor F. Sirvent and Boris Solomyak, Pure Discrete Spectrum for One-dimensional Substitution Systems of Pisot Type. Canadian Mathematical Bulletin, 45(4), 2002, 697-710; (page 709 example 3). Also at ResearchGate
- Index entries for sequences that are fixed points of mappings
Programs
-
Mathematica
s[1]= {1, 1, 2}; s[2]= {3}; s[3]= {1, 4}; s[4]= {1}; t[b_]:= Flatten[s /@ b]; a[0]= {1}; a[1]= t[p[0]]; a[n_]:= t[a[n-1]]; a[10]
Extensions
Edited by G. C. Greubel, Apr 03 2022
Comments