cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A106797 Fixed point of the morphism 1 -> 1,1,1,1,2,2,3; 2 -> 4,1; 3 -> 2,1,1,1; 4 -> 1,2,1 starting with a(0) = 1.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 3, 1, 1, 1, 1, 2, 2, 3, 1, 1, 1, 1, 2, 2, 3, 1, 1, 1, 1, 2, 2, 3, 4, 1, 4, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 1, 1, 1, 1, 2, 2, 3, 1, 1, 1, 1, 2, 2, 3, 1, 1, 1, 1, 2, 2, 3, 4, 1, 4, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 1, 1, 1, 1, 2, 2, 3, 1, 1, 1, 1, 2, 2, 3, 1, 1, 1, 1, 2, 2, 3, 4, 1, 4, 1, 2
Offset: 0

Views

Author

Roger L. Bagula, May 17 2005

Keywords

Comments

4-symbol substitution of the Pisot characteristic polynomial: x^4 - 4*x^3 - 6*x^2 - x - 1.

Examples

			The first few steps of the substitution are:
Start: 1
Maps:
  1 --> 1 1 1 1 2 2 3
  2 --> 4 1
  3 --> 2 1 1 1
  4 --> 1 2 1
-------------
0:   (#=1)
  1
1:   (#=7)
  1111223
2:   (#=36)
  111122311112231111223111122341412111
		

Crossrefs

Programs

  • Mathematica
    s[1]= {1,1,1,1,2,2,3}; s[2]= {4,1}; s[3]= {2,1,1,1}; s[4]= {1,2,1};
    t[a_]:= Flatten[s /@ a]; p[0]= {1}; p[1]= t[p[0]]; p[n_]:= t[p[n-1]]; p[3]

Extensions

Edited by G. C. Greubel, Apr 03 2022