A106797 Fixed point of the morphism 1 -> 1,1,1,1,2,2,3; 2 -> 4,1; 3 -> 2,1,1,1; 4 -> 1,2,1 starting with a(0) = 1.
1, 1, 1, 1, 2, 2, 3, 1, 1, 1, 1, 2, 2, 3, 1, 1, 1, 1, 2, 2, 3, 1, 1, 1, 1, 2, 2, 3, 4, 1, 4, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 1, 1, 1, 1, 2, 2, 3, 1, 1, 1, 1, 2, 2, 3, 1, 1, 1, 1, 2, 2, 3, 4, 1, 4, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 1, 1, 1, 1, 2, 2, 3, 1, 1, 1, 1, 2, 2, 3, 1, 1, 1, 1, 2, 2, 3, 4, 1, 4, 1, 2
Offset: 0
Keywords
Examples
The first few steps of the substitution are: Start: 1 Maps: 1 --> 1 1 1 1 2 2 3 2 --> 4 1 3 --> 2 1 1 1 4 --> 1 2 1 ------------- 0: (#=1) 1 1: (#=7) 1111223 2: (#=36) 111122311112231111223111122341412111
Links
- G. C. Greubel, Table of n, a(n) for n = 0..10000
- Victor F. Sirvent and Boris Solomyak, Pure Discrete Spectrum for One-dimensional Substitution Systems of Pisot Type. Canadian Mathematical Bulletin, 45(4), 2002, 697-710; (page 709 example 4). Also at ResearchGate
- Index entries for sequences that are fixed points of mappings
Programs
-
Mathematica
s[1]= {1,1,1,1,2,2,3}; s[2]= {4,1}; s[3]= {2,1,1,1}; s[4]= {1,2,1}; t[a_]:= Flatten[s /@ a]; p[0]= {1}; p[1]= t[p[0]]; p[n_]:= t[p[n-1]]; p[3]
Extensions
Edited by G. C. Greubel, Apr 03 2022
Comments