A106798 Fixed point of the morphism 1 -> 3; 2 -> 1,2,2; 3 -> 1,2, starting with a(0) = 1.
1, 2, 3, 1, 2, 2, 1, 2, 2, 3, 1, 2, 2, 1, 2, 3, 1, 2, 2, 1, 2, 2, 3, 1, 2, 2, 1, 2, 2, 1, 2, 3, 1, 2, 2, 1, 2, 2, 3, 1, 2, 2, 1, 2, 2, 3, 1, 2, 2, 1, 2, 3, 1, 2, 2, 1, 2, 2, 3, 1, 2, 2, 1, 2, 2, 1, 2, 3, 1, 2, 2, 1, 2, 2, 3, 1, 2, 2, 1, 2, 3, 1, 2, 2, 1, 2, 2, 3, 1, 2, 2, 1, 2, 2, 1, 2, 3, 1, 2, 2, 1, 2, 2, 3, 1
Offset: 0
Examples
The first few steps of the substitution are: Start: 1 Maps: 1 --> 3 2 --> 1 2 2 3 --> 1 2 ------------- a(n) = p(2*n) ------------- 0: (#=1) (p(0)) 1 1: (#=2) (p(2)) 12 2: (#=9) (p(4)) 123122122 3: (#=45) (p(6)) 123122122312212312212231221221231221223122122
Links
- G. C. Greubel, Table of n, a(n) for n = 0..10000
- Victor F. Sirvent and Boris Solomyak, Pure Discrete Spectrum for One-dimensional Substitution Systems of Pisot Type. Canadian Mathematical Bulletin, 45(4), 2002, 697-710. Also at ResearchGate
- Index entries for sequences that are fixed points of mappings
Programs
-
Mathematica
s[1]= {3}; s[2]= {1,2,2}; s[3]= {1,2}; t[b_]:= Flatten[s /@ b]; p[0]= {1}; p[1]= t[p[0]]; p[n_]:= t[p[n-1]]; a[n_]:= p[2*n]; a[4]
Formula
a(n) = p(2*n), where p(n) maps the fixed point morphism 1 -> 3; 2 -> 1,2,2; 3 -> 1,2, starting with p(0) = 1.
Extensions
Edited by G. C. Greubel, Apr 03 2022
Comments