A106800 Triangle of Stirling numbers of 2nd kind, S(n, n-k), n >= 0, 0 <= k <= n.
1, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 6, 7, 1, 0, 1, 10, 25, 15, 1, 0, 1, 15, 65, 90, 31, 1, 0, 1, 21, 140, 350, 301, 63, 1, 0, 1, 28, 266, 1050, 1701, 966, 127, 1, 0, 1, 36, 462, 2646, 6951, 7770, 3025, 255, 1, 0, 1, 45, 750, 5880, 22827, 42525, 34105, 9330, 511, 1, 0
Offset: 0
Examples
From _Gheorghe Coserea_, Jan 30 2017: (Start) Triangle starts: n\k [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [0] 1; [1] 1, 0; [2] 1, 1, 0; [3] 1, 3, 1, 0; [4] 1, 6, 7, 1, 0; [5] 1, 10, 25, 15, 1, 0; [6] 1, 15, 65, 90, 31, 1, 0; [7] 1, 21, 140, 350, 301, 63, 1, 0; [8] 1, 28, 266, 1050, 1701, 966, 127, 1, 0; [9] 1, 36, 462, 2646, 6951, 7770, 3025, 255, 1, 0; ... (End)
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 835.
- F. N. David, M. G. Kendall, and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 223.
- Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 2, table 2.14.1 at page 24.
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
- A. Aboud, J.-P. Bultel, A. Chouria, J.-G. Luque, and O. Mallet, Bell polynomials in combinatorial Hopf algebras, arXiv preprint arXiv:1402.2960 [math.CO], 2014.
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- J. Fernando Barbero G., Jesús Salas, and Eduardo J. S. Villaseñor, Bivariate Generating Functions for a Class of Linear Recurrences. I. General Structure, arXiv:1307.2010 [math.CO], 2013.
- Eric Weisstein's World of Mathematics, Bell Polynomial.
Crossrefs
Programs
-
Maple
seq(seq(Stirling2(n, n-k), k=0..n), n=0..8); # Peter Luschny, Feb 21 2021
-
Mathematica
Table[ StirlingS2[n, m], {n, 0, 10}, {m, n, 0, -1}]//Flatten (* Robert G. Wilson v, Jan 30 2017 *)
-
PARI
N=11; x='x+O('x^N); t='t; concat(apply(p->Vec(p), Vec(serlaplace(exp(t*(exp(x)-1)))))) \\ Gheorghe Coserea, Jan 30 2017 {T(n, k) = my(A, B); if( n<0 || k>n, 0, A = B = exp(x + x * O(x^n)); for(i=1, n, A = x * A'); polcoeff(A / B, n-k))}; /* Michael Somos, Aug 16 2017 */
-
Sage
flatten([[stirling_number2(n, n-k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Sep 11 2021
Formula
A(x;t) = exp(t*(exp(x)-1)) = Sum_{n>=0} P_n(t) * x^n/n!, where P_n(t) = Sum_{k=0..n} T(n,k)*t^(n-k). - Gheorghe Coserea, Jan 30 2017
Also, P_n(t) * exp(t) = (t * d/dt)^n exp(t). - Michael Somos, Aug 16 2017
T(n, k) = Sum_{j=0..k} E2(k, j)*binomial(n + k - j, 2*k), where E2(k, j) are the second-order Eulerian numbers A340556. - Peter Luschny, Feb 21 2021
Comments