A106805 Expansion of g.f.: 1/(1 - 2*x - x^2 + x^3).
1, 2, 5, 11, 25, 56, 126, 283, 636, 1429, 3211, 7215, 16212, 36428, 81853, 183922, 413269, 928607, 2086561, 4688460, 10534874, 23671647, 53189708, 119516189, 268550439, 603427359, 1355888968, 3046654856, 6845771321, 15382308530, 34563733525, 77664004259
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (2,1,-1).
Crossrefs
A006054 shifted left twice.
Programs
-
Magma
I:=[1,2,5]; [n le 3 select I[n] else 2*Self(n-1) +Self(n-2) -Self(n-3): n in [1..36]]; // G. C. Greubel, Sep 11 2021
-
Mathematica
LinearRecurrence[{2,1,-1}, {1,2,5}, 35] (* Vladimir Joseph Stephan Orlovsky, Feb 13 2012 *)
-
PARI
Vec( 1/(1-2*x-x^2+x^3) + O(x^66) ) /* Joerg Arndt, Sep 30 2012 */
-
Sage
def A106805_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( 1/(1-2*x-x^2+x^3) ).list() A106805_list(35) # G. C. Greubel, Sep 11 2021
Formula
G.f. for sequence with 1 prepended: 1/( 1 - Sum_{k>=0} x*(x+x^2-x^3)^k ). - Joerg Arndt, Sep 30 2012
Extensions
Edited by the Associate Editors of the OEIS, Apr 09 2009
Name corrected by Joerg Arndt, Sep 30 2012
Comments