cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A106805 Expansion of g.f.: 1/(1 - 2*x - x^2 + x^3).

Original entry on oeis.org

1, 2, 5, 11, 25, 56, 126, 283, 636, 1429, 3211, 7215, 16212, 36428, 81853, 183922, 413269, 928607, 2086561, 4688460, 10534874, 23671647, 53189708, 119516189, 268550439, 603427359, 1355888968, 3046654856, 6845771321, 15382308530, 34563733525, 77664004259
Offset: 0

Views

Author

Roger L. Bagula, May 17 2005

Keywords

Comments

Essentially the same as A006054. - Joerg Arndt, Nov 08 2022

Crossrefs

A006054 shifted left twice.

Programs

  • Magma
    I:=[1,2,5]; [n le 3 select I[n] else 2*Self(n-1) +Self(n-2) -Self(n-3): n in [1..36]]; // G. C. Greubel, Sep 11 2021
    
  • Mathematica
    LinearRecurrence[{2,1,-1}, {1,2,5}, 35] (* Vladimir Joseph Stephan Orlovsky, Feb 13 2012 *)
  • PARI
    Vec( 1/(1-2*x-x^2+x^3) + O(x^66) )  /* Joerg Arndt, Sep 30 2012 */
    
  • Sage
    def A106805_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( 1/(1-2*x-x^2+x^3) ).list()
    A106805_list(35) # G. C. Greubel, Sep 11 2021

Formula

G.f. for sequence with 1 prepended: 1/( 1 - Sum_{k>=0} x*(x+x^2-x^3)^k ). - Joerg Arndt, Sep 30 2012

Extensions

Edited by the Associate Editors of the OEIS, Apr 09 2009
Name corrected by Joerg Arndt, Sep 30 2012