cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A158552 a(n) = A144433(n) - A106833(n).

Original entry on oeis.org

5, -1, 7, -3, 9, -5, 11, -7, 13, -9, 15, -11, 17, -13, 19, -15, 21, -17, 23, -19, 25, -21, 27, -23, 29, -25, 31, -27, 33, -29, 35, -31, 37, -33, 39, -35, 41, -37, 43, -39, 45, -41, 47, -43, 49, -45, 51, -47, 53, -49, 55, -51, 57, -53, 59, -55, 61, -57, 63, -59, 65, -61, 67
Offset: 1

Views

Author

Paul Curtz, Mar 21 2009

Keywords

Crossrefs

Formula

a(n) = A118402(n+3).
From R. J. Mathar, Apr 08 2009: (Start)
G.f.: x*(5+4*x+x^2)/((1-x)*(1+x)^2).
a(n) = -a(n-1) + a(n-2) + a(n-3).
(End)

Extensions

Edited and extended by R. J. Mathar, Apr 08 2009

A158674 Period 18: repeat 3, 4, 0, 8, 6, 3, 3, 7, 0, 2, 6, 6, 3, 1, 0, 5, 6, 0.

Original entry on oeis.org

3, 4, 0, 8, 6, 3, 3, 7, 0, 2, 6, 6, 3, 1, 0, 5, 6, 0, 3, 4, 0, 8, 6, 3, 3, 7, 0, 2, 6, 6, 3, 1, 0, 5, 6, 0, 3, 4, 0, 8, 6, 3, 3, 7, 0, 2, 6, 6, 3, 1, 0, 5, 6, 0, 3, 4, 0, 8, 6, 3, 3, 7, 0, 2, 6, 6, 3, 1, 0, 5, 6, 0, 3, 4, 0, 8, 6, 3, 3, 7, 0, 2, 6, 6, 3, 1, 0, 5, 6, 0, 3, 4, 0, 8, 6, 3, 3, 7, 0, 2, 6, 6, 3, 1
Offset: 1

Views

Author

Paul Curtz, Mar 24 2009

Keywords

Comments

Also the decimal expansion of 378737078073678400/111111111111111111 .

Programs

Formula

a(n) = A106833(n) mod 9.
G.f.: -(3+4*x+8*x^3+6*x^4+3*x^5+3*x^6+7*x^7+2*x^9+6*x^10+6*x^11+3*x^12+x^13+5*x^15+6*x^16) / ((x-1) * (1+x+x^2) * (1+x^3+x^6) * (1+x) * (1-x+x^2) * (1-x^3+x^6)).

Extensions

References to apparently unrelated sequences removed by R. J. Mathar, Mar 02 2010

A168068 Array T(n,k) read by antidiagonals: T(n,2k+1) = 2k+1. T(n,2k) = 2^n*k.

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 0, 1, 2, 3, 0, 1, 4, 3, 2, 0, 1, 8, 3, 4, 5, 0, 1, 16, 3, 8, 5, 3, 0, 1, 32, 3, 16, 5, 6, 7, 0, 1, 64, 3, 32, 5, 12, 7, 4, 0, 1, 128, 3, 64, 5, 24, 7, 8, 9, 0, 1, 256, 3, 128, 5, 48, 7, 16, 9, 5, 0, 1, 512, 3, 256, 5, 96, 7, 32, 9, 10, 11, 0, 1, 1024, 3, 512, 5, 192, 7, 64, 9, 20, 11, 6, 0, 1, 2048, 3, 1024, 5
Offset: 0

Views

Author

Paul Curtz, Nov 18 2009

Keywords

Comments

The array is constructed multiplying the even-indexed A026741(k) by 2^n, and keeping the odd-indexed A026471(k) as they are.
Connections to the hydrogen spectrum: The squares of the second row are T(1,k)^2 = A001477(k)^2 = A000290(k) which are the denominators of the Lyman lines (see A171522). The squares of the row T(2,k) are in A154615, denominators of the Balmer series. Row T(3,k) is related to A106833 and A061038.

Examples

			The array starts in row n=0 with columns k>=0 as:
0,1,1,3,2,5,3,7,4, A026741
0,1,2,3,4,5,6,7,8, A001477
0,1,4,3,8,5,12,7,16, A022998
0,1,8,3,16,5,24,7,32, A144433
0,1,16,3,32,5,48,7,64,
0,1,32,3,64,5,96,7,128,
		

Programs

  • Maple
    A168068 := proc(n,k) if type(k,'odd') then k; else 2^(n-1)*k ; end if; end proc: # R. J. Mathar, Jan 22 2011

A298950 Numbers k such that 5*k - 4 is a square.

Original entry on oeis.org

1, 4, 8, 17, 25, 40, 52, 73, 89, 116, 136, 169, 193, 232, 260, 305, 337, 388, 424, 481, 521, 584, 628, 697, 745, 820, 872, 953, 1009, 1096, 1156, 1249, 1313, 1412, 1480, 1585, 1657, 1768, 1844, 1961, 2041, 2164, 2248, 2377, 2465, 2600, 2692, 2833, 2929, 3076, 3176, 3329, 3433
Offset: 1

Views

Author

Bruno Berselli, Jan 30 2018

Keywords

Comments

a(n) is a member of A140612. Proof: a(n) = n^2 + (n/2-1)^2 for even n, otherwise a(n) = (n-1)^2 + ((n+1)/2)^2; also, a(n) + 1 = (n-1)^2 + (n/2+1)^2 for even n, otherwise a(n) + 1 = n^2 + ((n-3)/2)^2. Therefore, both a(n) and a(n) + 1 belong to A001481.
Primes in sequence are listed in A245042.
Squares in sequence are listed in A081068.

Crossrefs

Cf. A195162: numbers k such that 5*k + 4 is a square.
Subsequence of A001481, A020668, A036404, A140612.
Cf. A036666, A081068, A106833 (first differences), A245042.

Programs

  • GAP
    List([1..60], n -> (10*n*(n-1)+(2*n-1)*(-1)^n+9)/8);
    
  • Magma
    [(10*n*(n-1)+(2*n-1)*(-1)^n+9)/8: n in [1..60]];
    
  • Mathematica
    Table[(10 n (n - 1) + (2 n - 1) (-1)^n + 9)/8, {n, 1, 60}]
    LinearRecurrence[{1,2,-2,-1,1},{1,4,8,17,25},60] (* Harvey P. Dale, Sep 16 2022 *)
  • Maxima
    makelist((10*n*(n-1)+(2*n-1)*(-1)^n+9)/8, n, 1, 60);
    
  • PARI
    Vec((1+x^2)*(1+3*x+x^2)/((1-x)^3*(1+x)^2)+O(x^60))
    
  • PARI
    vector(60, n, nn; (10*n*(n-1)+(2*n-1)*(-1)^n+9)/8)
    
  • Python
    [(10*n*(n-1)+(2*n-1)*(-1)**n+9)/8 for n in range(1, 60)]
  • Sage
    [(10*n*(n-1)+(2*n-1)*(-1)^n+9)/8 for n in (1..60)]
    

Formula

G.f.: x*(1 + x^2)*(1 + 3*x + x^2)/((1 - x)^3*(1 + x)^2).
a(n) = a(1-n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5).
a(n) = (10*n*(n-1) + (2*n-1)*(-1)^n + 9)/8.
a(n) = A036666(n) + 1.

A152053 a(n) = A144433(3n+1) + A144433(3n+2) + A144433(3n+3).

Original entry on oeis.org

27, 36, 81, 72, 135, 108, 189, 144, 243, 180, 297, 216, 351, 252, 405, 288, 459, 324, 513, 360, 567, 396, 621, 432, 675, 468, 729, 504, 783, 540, 837, 576, 891, 612, 945, 648, 999, 684, 1053, 720, 1107
Offset: 0

Views

Author

Paul Curtz, Nov 22 2008

Keywords

Comments

All terms are multiples of 9.

Crossrefs

Programs

  • Mathematica
    Table[(9/2)(5 + (-1)^n)(n + 1), {n, 0, 40}] (* Jean-François Alcover, Feb 02 2019 *)
    LinearRecurrence[{0,2,0,-1},{27,36,81,72},50] (* Harvey P. Dale, Nov 07 2019 *)
  • PARI
    a(n) = 45*(n+1)/2 + 9*(-1)^n*(n+1)/2 \\ Jianing Song, Feb 04 2019

Formula

From R. J. Mathar, May 21 2009: (Start)
G.f.: 9*(3+4*x+3*x^2)/((x-1)^2*(1+x)^2).
a(n) = 45*(n+1)/2 + 9*(-1)^n*(n+1)/2. (End)
a(n) = 9*A106833(n+1). - Jean-François Alcover, Feb 02 2019, after Paul Curtz
a(n+4) = 2*a(n+2) - a(n). - Jianing Song, Feb 04 2019

Extensions

Edited by R. J. Mathar, May 21 2009

A340519 Smallest order of a non-abelian group with a center of order n.

Original entry on oeis.org

6, 8, 18, 16, 30, 24, 42, 32, 54, 40, 66, 48, 78, 56, 90, 64, 102, 72, 114, 80, 126, 88, 138, 96, 150, 104, 162, 112, 174, 120, 186, 128, 198, 136, 210, 144, 222, 152, 234, 160, 246, 168, 258, 176, 270, 184, 282, 192, 294, 200, 306, 208, 318, 216, 330, 224, 342, 232, 354, 240, 366, 248
Offset: 1

Views

Author

Bob Heffernan and Des MacHale, Jan 24 2021; corrected Feb 14 2021

Keywords

Comments

a(n) is 6n if n is odd and 4n if n is even. This is because the groups involved are C(n) X S3 if n is odd, where S3 is the symmetric group of order 6, and C(n/2) X D8 if n is even, where D8 is the dihedral group of order 8 and C(m) is the cyclic group of order m.
By Lagrange's Theorem a(n) is a multiple of n.

Crossrefs

Equals 2*A106833.

Programs

  • Mathematica
    Table[If[OddQ[n],6n,4n],{n,100}] (* Harvey P. Dale, Mar 03 2023 *)
Showing 1-6 of 6 results.