A106865 Primes of the form 2x^2 + 2xy + 3y^2.
2, 3, 7, 23, 43, 47, 67, 83, 103, 107, 127, 163, 167, 223, 227, 263, 283, 307, 347, 367, 383, 443, 463, 467, 487, 503, 523, 547, 563, 587, 607, 643, 647, 683, 727, 743, 787, 823, 827, 863, 883, 887, 907, 947, 967, 983, 1063, 1087, 1103, 1123, 1163, 1187
Offset: 1
Examples
x = 1, y = 1 gives 2x^2 + 2xy + 3y^2 = 2 + 2 + 3 = 7. x = 1, y = -3 gives 2x^2 + 2xy + 3y^2 = 2 - 6 + 27 = 23.
References
- David A. Cox, "Primes of the Form x^2 + n y^2", Wiley, 1989; see p. 33.
Links
- Vincenzo Librandi and Ray Chandler, Table of n, a(n) for n = 1..10000 [First 1000 terms from Vincenzo Librandi]
- N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
Programs
-
Maple
select(isprime, [2, seq(seq(5+s+20*i,s=[-2,2]),i=0..10^3)]); # Robert Israel, Dec 23 2015
-
Mathematica
QuadPrimes2[2, -2, 3, 10000] (* see A106856 *)
-
PARI
is(n)=isprime(n) && #qfbsolve(Qfb(2,2,3),n)>0 \\ Charles R Greathouse IV, Feb 09 2017
Comments