cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A106856 Primes of the form x^2 + xy + 2y^2, with x and y nonnegative.

Original entry on oeis.org

2, 11, 23, 37, 43, 53, 71, 79, 107, 109, 127, 137, 149, 151, 163, 193, 197, 211, 233, 239, 263, 281, 317, 331, 337, 373, 389, 401, 421, 431, 443, 463, 487, 491, 499, 541, 547, 557, 569, 599, 613, 617, 641, 653, 659, 673, 683, 739, 743, 751, 757, 809, 821
Offset: 1

Views

Author

T. D. Noe, May 09 2005, Apr 28 2008

Keywords

Comments

Discriminant=-7. Binary quadratic forms ax^2 + bxy + cy^2 have discriminant d = b^2 - 4ac.
Consider sequences of primes produced by forms with -100
The Mathematica function QuadPrimes2 is useful for finding the primes less than "lim" represented by the positive definite quadratic form ax^2 + bxy + cy^2 for any a, b and c satisfying a>0, c>0, and discriminant d<0. It does this by examining all x>=0 and y>=0 in the ellipse ax^2 + bxy + cy^2 <= lim. To find the primes generated by positive and negative x and y, compute the union of QuadPrimes2[a,b,c,lim] and QuadPrimes2[a,-b,c,lim]. - T. D. Noe, Sep 01 2009
For other programs see the "Binary Quadratic Forms and OEIS" link.

References

  • David A. Cox, Primes of the Form x^2 + n y^2, Wiley, 1989.
  • L. E. Dickson, History of the Theory of Numbers, Vol. 3, Chelsea, 1923.

Crossrefs

Discriminants in the range -3 to -100: A007645 (d=-3), A002313 (d=-4), A045373, A106856 (d=-7), A033203 (d=-8), A056874, A106857 (d=-11), A002476 (d=-12), A033212, A106858-A106861 (d=-15), A002144, A002313 (d=-16), A106862-A106863 (d=-19), A033205, A106864-A106865 (d=-20), A106866-A106869 (d=-23), A033199, A084865 (d=-24), A002476, A106870 (d=-27), A033207 (d=-28), A033221, A106871-A106874 (d=-31), A007519, A007520, A106875-A106876 (d=-32), A106877-A106881 (d=-35), A040117, A068228, A106882 (d=-36), A033227, A106883-A106888 (d=-39), A033201, A106889 (d=-40), A106890-A106891 (d=-43), A033209, A106282, A106892-A106893 (d=-44), A033232, A106894-A106900 (d=-47), A068229 (d=-48), A106901-A106904 (d=-51), A033210, A106905-A106906 (d=-52), A033235, A106907-A106913 (d=-55), A033211, A106914-A106917 (d=-56), A106918-A106922 (d=-59), A033212, A106859 (d=-60), A106923-A106930 (d=-63), A007521, A106931 (d=-64), A106932-A106933 (d=-67), A033213, A106934-A106938 (d=-68), A033246, A106939-A106948 (d=-71), A106949-A106950 (d=-72), A033212, A106951-A106952 (d=-75), A033214, A106953-A106955 (d=-76), A033251, A106956-A106962 (d=-79), A047650, A106963-A106965 (d=-80), A106966-A106970 (d=-83), A033215, A102271, A102273, A106971-A106974 (d=-84), A033256, A106975-A106983 (d=-87), A033216, A106984 (d=-88), A106985-A106989 (d=-91), A033217 (d=-92), A033206, A106990-A107001 (d=-95), A107002-A107008 (d=-96), A107009-A107013 (d=-99).
Other collections of quadratic forms: A139643, A139827.
For a more comprehensive list of sequences giving numbers and/or primes represented by binary quadratic forms, see the "Binary Quadratic Forms and OEIS" link.
Cf. also A242660.

Programs

  • Mathematica
    QuadPrimes2[a_, b_, c_, lmt_] := Module[{p, d, lst = {}, xMax, yMax}, d = b^2 - 4a*c; If[a > 0 && c > 0 && d < 0, xMax = Sqrt[lmt/a]*(1+Abs[b]/Floor[Sqrt[-d]])]; Do[ If[ 4c*lmt + d*x^2 >= 0, yMax = ((-b)*x + Sqrt[4c*lmt + d*x^2])/(2c), yMax = 0 ]; Do[p = a*x^2 + b*x*y + c*y^2; If[ PrimeQ[ p]  && p <= lmt && !MemberQ[ lst, p], AppendTo[ lst, p]], {y, 0, yMax}], {x, 0, xMax}]; Sort[ lst]];
    QuadPrimes2[1, 1, 2, 1000]
    (This is a corrected version of the old, incorrect, program QuadPrimes. - N. J. A. Sloane, Jun 15 2014)
    max = 1000; Table[yy = {y, 1, Floor[Sqrt[8 max - 7 x^2]/4 - x/4]}; Table[ x^2 + x y + 2 y^2, yy // Evaluate], {x, 0, Floor[Sqrt[max]]}] // Flatten // Union // Select[#, PrimeQ]& (* Jean-François Alcover, Oct 04 2018 *)
  • PARI
    list(lim)=my(q=Qfb(1,1,2), v=List([2])); forprime(p=2, lim, if(vecmin(qfbsolve(q, p))>0, listput(v,p))); Vec(v) \\ Charles R Greathouse IV, Aug 05 2016

Extensions

Removed old Mathematica programs - T. D. Noe, Sep 09 2009
Edited (pointed out error in QuadPrimes, added new version of program, checked and extended b-file). - N. J. A. Sloane, Jun 06 2014

A033205 Primes of form x^2 + 5*y^2.

Original entry on oeis.org

5, 29, 41, 61, 89, 101, 109, 149, 181, 229, 241, 269, 281, 349, 389, 401, 409, 421, 449, 461, 509, 521, 541, 569, 601, 641, 661, 701, 709, 761, 769, 809, 821, 829, 881, 929, 941, 1009, 1021, 1049, 1061, 1069, 1109, 1129, 1181, 1201, 1229, 1249, 1289, 1301, 1321, 1361, 1381, 1409, 1429, 1481, 1489
Offset: 1

Keywords

Comments

It is a classical result that p is of the form x^2 + 5y^2 if and only if p = 5 or p == 1 or 9 mod 20 (see Cox, page 33). - N. J. A. Sloane, Sep 20 2012
Except for 5, also primes of the form x^2 + 25y^2. See A140633. - T. D. Noe, May 19 2008
Or, 5 and all primes p that divide Fibonacci((p - 1)/2) = A121568(n). - Alexander Adamchuk, Aug 07 2006

References

  • David A. Cox, "Primes of the Form x^2 + n y^2", Wiley, 1989; see p. 33.

Crossrefs

Subsequence of A091729.
Primes in A020669 (numbers of form x^2+5y^2). Cf. A121568, A139643, A216815.
Cf. A029718, A106865 (in the same genus).

Programs

  • Magma
    [p: p in PrimesUpTo(2000) | NormEquation(5,p) eq true]; // Bruno Berselli, Jul 03 2016
    
  • Mathematica
    QuadPrimes2[1, 0, 5, 10000] (* see A106856 *)
  • PARI
    is(n)=my(k=n%20); n==5 || ((k==9 || k==9) && isprime(n)) \\ Charles R Greathouse IV, Feb 09 2017

Formula

A020669 INTERSECT A000040.
a(n) ~ 4n log n. - Charles R Greathouse IV, Nov 09 2012

A020669 Numbers of form x^2 + 5 y^2.

Original entry on oeis.org

0, 1, 4, 5, 6, 9, 14, 16, 20, 21, 24, 25, 29, 30, 36, 41, 45, 46, 49, 54, 56, 61, 64, 69, 70, 80, 81, 84, 86, 89, 94, 96, 100, 101, 105, 109, 116, 120, 121, 125, 126, 129, 134, 141, 144, 145, 149, 150, 161, 164, 166, 169, 174, 180, 181, 184, 189, 196, 201, 205, 206, 214, 216
Offset: 1

Keywords

Comments

In other words, numbers represented by quadratic form with Gram matrix [1,0; 0,5].
x^2 + 5 y^2 has discriminant -20.
A positive integer n is in this sequence if and only if the p-adic order ord_p(n) of n is even for any prime p with floor(p/10) odd, and the number of prime divisors p == 3 or 7 (mod 20) of n with ord_p(n) odd has the same parity with ord_2(n). - Zhi-Wei Sun, Mar 24 2018

References

  • H. Cohn, A second course in number theory, John Wiley & Sons, Inc., New York-London, 1962. See pp. 3, 4 and later chapters.
  • David A. Cox, Primes of the Form x^2 + n y^2, Wiley, 1989. See Eq. (2.22), p. 33.

Crossrefs

For primes see A033205.
For the properly represented numbers see A344231.

Programs

  • Magma
    [n: n in [0..216] | NormEquation(5, n) eq true]; // Arkadiusz Wesolowski, May 11 2016
  • Maple
    select(t -> [isolve(x^2+5*y^2=t)]<>[], [$0..1000]); # Robert Israel, May 11 2016
  • Mathematica
    formQ[n_] := Reduce[x >= 0 && y >= 0 && n == x^2 + 5 y^2, {x, y}, Integers] =!= False; Select[ Range[0, 300], formQ] (* Jean-François Alcover, Sep 20 2011 *)
    mx = 300;
    limx = Sqrt[mx]; limy = Sqrt[mx/5];
    Select[
    Union[
    Flatten[
    Table[x^2 + 5*y^2, {x, 0, limx}, {y, 0, limy}]
           ]
         ], # <= mx &
    ] (* T. D. Noe, Sep 20 2011 *)

Formula

List contains 0 and all positive n such that 2*A035170(n) = A028586(2n) is nonzero. - Michael Somos, Oct 21 2006

Extensions

Entry revised by N. J. A. Sloane, Sep 20 2012

A091727 Norms of prime ideals of Z[sqrt(-5)].

Original entry on oeis.org

2, 3, 5, 7, 23, 29, 41, 43, 47, 61, 67, 83, 89, 101, 103, 107, 109, 121, 127, 149, 163, 167, 169, 181, 223, 227, 229, 241, 263, 269, 281, 283, 289, 307, 347, 349, 361, 367, 383, 389, 401, 409, 421, 443, 449, 461, 463, 467, 487
Offset: 1

Author

Paul Boddington, Feb 02 2004

Keywords

Comments

Consists of primes congruent to 1, 2, 3, 5, 7, 9 (mod 20) together with the squares of all other primes.
From Jianing Song, Feb 20 2021: (Start)
The norm of a nonzero ideal I in a ring R is defined as the size of the quotient ring R/I.
Note that Z[sqrt(-5)] has class number 2.
For primes p == 1, 9 (mod 20), there are two distinct ideals with norm p in Z[sqrt(-5)], namely (x + y*sqrt(-5)) and (x - y*sqrt(-5)), where (x,y) is a solution to x^2 + 5*y^2 = p.
For p == 3, 7 (mod 20), there are also two distinct ideals with norm p, namely (p, x+y*sqrt(-5)) and (p, x-y*sqrt(-5)), where (x,y) is a solution to x^2 + 5*y^2 = p^2 with y != 0; (2, 1+sqrt(-5)) and (sqrt(-5)) are respectively the unique ideal with norm 2 and 5.
For p == 11, 13, 17, 19 (mod 20), (p) is the only ideal with norm p^2. (End)

Examples

			From _Jianing Song_, Feb 20 2021: (Start)
Let |I| be the norm of an ideal I, then:
|(2, 1+sqrt(-5))| = 2;
|(3, 2+sqrt(-5))| = |(3, 2-sqrt(-5))| = 3;
|(sqrt(-5))| = 5;
|(7, 1+3*sqrt(-5))| = |(7, 1-3*sqrt(-5))| = 7;
|(23, 22+3*sqrt(-5))| = |(23, 22-3*sqrt(-5))| = 23;
|(3 + 2*sqrt(-5))| = |(3 - 2*sqrt(-5))| = 29;
|(6 + sqrt(-5))| = |(6 - sqrt(-5))| = 41. (End)
		

References

  • David A. Cox, Primes of the form x^2+ny^2, Wiley, 1989.
  • A. Frohlich and M. J. Taylor, Algebraic number theory, Cambridge university press, 1991.

Crossrefs

Cf. A091728.
The number of distinct ideals with norm n is given by A035170.
Norms of prime ideals in O_K, where K is the quadratic field with discriminant D and O_K be the ring of integers of K: A055673 (D=8), A341783 (D=5), A055664 (D=-3), A055025 (D=-4), A090348 (D=-7), A341784 (D=-8), A341785 (D=-11), A341786 (D=-15*), A341787 (D=-19), this sequence (D=-20*), A341788 (D=-43), A341789 (D=-67), A341790 (D=-163). Here a "*" indicates the cases where O_K is not a unique factorization domain.

Programs

  • PARI
    isA091727(n) = { my(ms = [1, 2, 3, 5, 7, 9], p, e=isprimepower(n,&p)); if(!e || e>2, 0, bitxor(e-1,!!vecsearch(ms,p%20))); }; \\ Antti Karttunen, Feb 24 2020

Extensions

Offset corrected by Jianing Song, Feb 20 2021

A122870 Primes congruent to 3 or 7 mod 20.

Original entry on oeis.org

3, 7, 23, 43, 47, 67, 83, 103, 107, 127, 163, 167, 223, 227, 263, 283, 307, 347, 367, 383, 443, 463, 467, 487, 503, 523, 547, 563, 587, 607, 643, 647, 683, 727, 743, 787, 823, 827, 863, 883, 887, 907, 947, 967, 983, 1063, 1087, 1103, 1123, 1163, 1187, 1223
Offset: 1

Author

Alexander Adamchuk, Sep 16 2006

Keywords

Comments

The old name was "Primes p that divide Lucas((p+1)/2) = A000032((p+1)/2)".
Note that F(p+1) = F((p+1)/2)*Lucas((p+1)/2), where F = A000045. Since gcd(F(n),Lucas(n)) = 1 or 2 (because Lucas(n)^2 - 5*F(n)^2 = 4*(-1)^n), this sequence (under the old definition above) lists primes p such that p divides F(p+1) but does not divides F((p+1)/2). By Propositions 1.1 and 1.2 (the k = 3 case) of my link below, this is primes p == 3, 7 (mod 20). - Jianing Song, Jun 20 2025

References

  • David A. Cox, "Primes of the Form x^2 + n y^2", Wiley, 1989; see p. 33.

Crossrefs

Subseqeunce of A002145, A003631, A049098, A053027. Essentially the same as A106865.

Programs

  • Magma
    [p: p in PrimesUpTo(1500) | p mod 20 in [3, 7]]; // Vincenzo Librandi, Jan 06 2013
  • Mathematica
    Select[Prime[Range[1000]],IntegerQ[(Fibonacci[(#1+1)/2-1]+Fibonacci[(#1+1)/2+1])/#1]&]
    Select[Prime[Range[300]], MemberQ[{3, 7}, Mod[#, 20]]&] (* Vincenzo Librandi, Jan 06 2013 *)

Extensions

I merged A216816 into this entry at the suggestion of Jianing Song, Jun 20 2025. - N. J. A. Sloane, Jun 22 2025

A344231 Positive integers k properly represented by the positive definite binary quadratic form X^2 + 5*Y^2 = k, in increasing order.

Original entry on oeis.org

1, 5, 6, 9, 14, 21, 29, 30, 41, 45, 46, 49, 54, 61, 69, 70, 81, 86, 89, 94, 101, 105, 109, 126, 129, 134, 141, 145, 149, 161, 166, 174, 181, 189, 201, 205, 206, 214, 229, 230, 241, 245, 246, 249, 254, 261, 269, 270, 281, 294, 301, 305, 309, 321, 326, 329, 334, 345, 349, 366, 369, 381, 389, 401, 405
Offset: 1

Author

Wolfdieter Lang, Jun 10 2021

Keywords

Comments

This is one of the bisections of sequence A343238. The other sequence is A344232.
This is a proper subsequence of A020669.
The primes in this sequence are given in A033205.
Discriminant Disc = -20 = -4*5. Class number h(-20) = A000003(5) = 2. The reduced primitive forms representing the two proper (determinant = +1) equivalence classes are the present principal form F1 = [1, 0, 5] and F2 = [2, 2, 3] treated in A344232.
A positive integer k is properly represented by some primitive form of Disc = -20 if and only if the congruence s^2 + 20 == 0 (mod 4*k) has a solution. See, e.g., Buell Proposition 41, p. 50, or Scholz-Schoeneberg Satz 74, p. 105. That is, x^2 + 5 == 0 (mod k), with s = 2*x. For the representative solutions x from {0, 1, ..., k-1}, with k from A343238, see A343239. These solutions x determine the so-called representative parallel primitive forms (rpapfs) [k, 2*x, (x^2 + 5)/k] representing k. They are properly equivalent (via so called R(t)-transformations) to one of the reduced forms F1 or F2. (See also W. Lang's links in A225953 and A324251, but there indefinite forms are considered.)
In order to find out which k from A343238 is represented either by form F1 or F2 the two generic multiplicative characters of Disc = -20, namely Legendre(k|p), with the odd prime p = 5 which divides Disc = -20, and Jacobi(-1|k) can be used. See Buell, pp. 51-52. They lead to the two classes of genera of Disc -20.
The present genus I, the principal one, has for odd primes p, not 5, the values Legendre(p|5) = Legendre(5|p) = +1 and Jacobi(-1|p) = Legendre(-1|p) = +1, leading for odd primes not equal to 5 to A033205. The prime 2 is not represented. The prime 5 is trivially represented. For the other genus II these two characters have values -1. There prime 2 is represented.
For composite k the prime number factorization is used, and for powers of primes the lifting theorem is employed (see, e.g., Apostol, p. 121, Theorem 5.30). The solution for prime 2 represented by form F2 = [2, 2, 3] (from the other genus II) is not liftable to powers of 2. The solution for prime 5 is also not liftable (proof by induction). The solutions of the other primes from A033205 and A106865 are uniquely liftable to powers of these primes. See A343238 for all properly represented k for Disc = -20.
For the present genus I the properly represented integers k are given by 2^a*5^b*Product_{j=1..PI} (pI_j)^(eI(j))*Product_{k=1..PII} (pII_k)^(eII(k)), with a and b from {0, 1} but if PI = PII = 0 (empty products are 1) then a = b = 0 giving a(1) = 1. The odd primes pI_j are from A033205 (== {1, 9} (mod 20)), the primes pII_k are from the odd primes of A106865 (== {3, 7}(mod 20)). The exponents of the second product are restricted: if a = 1 then PII >= 1 and Sum_{k=1..PII} eII(k) is odd. If a = 0 then PII >= 0, and if PII >= 1 then this sum is even.
Neighboring numbers k (twins) begin: [5, 6], [29, 30], [45, 46], [69, 70], [205, 206], [229, 230], [245, 246], [269, 270], [405, 406], ...
For the solutions (X, Y) of F2 = [1, 0, 5] properly representing k = a(n) see A344233.

References

  • Tom M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, pp 121 - 122.
  • D. A. Buell, Binary Quadratic Forms, Springer, 1989.
  • A. Scholz and B. Schoeneberg, Einführung in die Zahlentheorie, Sammlung Göschen Band 5131, Walter de Gruyter, 1973.

A028586 Theta series of lattice with Gram matrix [2 1; 1 3].

Original entry on oeis.org

1, 0, 2, 4, 0, 0, 0, 4, 2, 0, 2, 0, 4, 0, 0, 4, 0, 0, 6, 0, 0, 0, 0, 4, 0, 0, 0, 8, 4, 0, 0, 0, 2, 0, 0, 4, 0, 0, 0, 0, 2, 0, 8, 4, 0, 0, 0, 4, 4, 0, 2, 0, 0, 0, 0, 0, 0, 0, 4, 0, 4, 0, 0, 12, 0, 0, 0, 4, 0, 0, 0, 0, 6, 0, 0, 4, 0, 0, 0, 0, 0, 0, 4, 4, 0, 0, 0, 8, 0, 0, 6, 0, 4, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 4
Offset: 0

Keywords

Comments

Ramanujan theta functions: f(q) := Prod_{k>=1} (1-(-q)^k) (see A121373), phi(q) := theta_3(q) := Sum_{k=-oo..oo} q^(k^2) (A000122), psi(q) := Sum_{k=0..oo} q^(k*(k+1)/2) (A010054), chi(q) := Prod_{k>=0} (1+q^(2k+1)) (A000700).
The number of integer solutions (x, y) to 2*x^2 + 2*x*y + 3*y^2 = n, discriminant -20. - Ray Chandler, Jul 12 2014

Examples

			1 + 2*q^2 + 4*q^3 + 4*q^7 + 2*q^8 + 2*q^10 + 4*q^12 + 4*q^15 + 6*q^18 + 4*q^23 + 8*q^27 + 4*q^28 + 2*q^32 + 4*q^35 + 2*q^40 + 8*q^42 + 4*q^43 + 4*q^47 + ...
		

Programs

  • Mathematica
    terms = 104; phi[q_] := EllipticTheta[3, 0, q]; chi[q_] := ((1 - InverseEllipticNomeQ[q])*InverseEllipticNomeQ[q]/(16*q))^(-1/24); psi[q_] := (1/2)*q^(-1/8)*EllipticTheta[2, 0, q^(1/2)]; s = phi[q^2]*phi[q^10] + 4*q^3*psi[q^4]*psi[q^20] + O[q]^(terms+1); CoefficientList[s, q] (* Jean-François Alcover, Jul 04 2017, after Michael Somos *)
    r[n_]:=Reduce[{x, y}.{{2, 1}, {1, 3}}.{x, y}==n, {x, y}, Integers]; Table[rn=r[n]; Which[rn===False, 0, Head[rn]===Or, Length[rn], Head[rn]===And, 1], {n, 0, 105}] (* Vincenzo Librandi, Feb 23 2020 *)
  • PARI
    {a(n) = if( n<1, n==0, qfrep([2, 1; 1, 3], n)[n] * 2)} /* Michael Somos, Aug 13 2006 */

Formula

G.f.: Sum_{n,m} x^(2*n^2 + 2*m*n + 3*m^2). - Michael Somos, Jan 31 2011
Expansion of (theta_3(z)*theta_3(5z)+theta_2(z)*theta_2(5z)).
Expansion of phi(q^2) * phi(q^10) + 4 * q^3 * psi(q^4) * psi(q^20) in powers of q where phi(q),psi(q) are Ramanujan theta functions. - Michael Somos, Aug 13 2006
If p is prime then a(p) is nonzero iff p is in A106865.
0=a(n)a(2n) and 2*A035170(n)=a(n)+a(2n) if n>0. - Michael Somos, Oct 21 2006

A106864 Primes of the form 2x^2+2xy+3y^2 with x and y nonnegative.

Original entry on oeis.org

2, 3, 7, 43, 47, 83, 103, 107, 163, 167, 223, 263, 283, 347, 367, 383, 443, 467, 487, 503, 523, 547, 607, 643, 683, 743, 787, 823, 827, 863, 883, 887, 947, 967, 983, 1063, 1087, 1123, 1223, 1303, 1307, 1367, 1423, 1427, 1447, 1483, 1487, 1523, 1583
Offset: 1

Author

T. D. Noe, May 09 2005

Keywords

Comments

See A106865 for all primes represented by this form.
Discriminant=-20.
Union of {2} and primes == 3 or 7 mod 20. - N. J. A. Sloane, Sep 04 2012

References

  • David A. Cox, Primes of the Form x^2 + n y^2, Wiley, 1989. See Eq. (2.22), p. 33. - N. J. A. Sloane, Sep 04 2012

Crossrefs

Cf. A106865.

Programs

  • Mathematica
    QuadPrimes2[2, 2, 3, 10000] (* see A106856 *)

A344232 All positive integers k properly represented by the positive definite binary quadratic form 2*X^2 + 2*X*Y + 3*Y^2 = k, in increasing order.

Original entry on oeis.org

2, 3, 7, 10, 15, 18, 23, 27, 35, 42, 43, 47, 58, 63, 67, 82, 83, 87, 90, 98, 103, 107, 115, 122, 123, 127, 135, 138, 147, 162, 163, 167, 178, 183, 202, 203, 207, 210, 215, 218, 223, 227, 235, 243, 258, 263, 267, 282, 283, 287, 290, 298, 303, 307, 315, 322, 327, 335, 343, 347, 362, 367, 378, 383, 387
Offset: 1

Author

Wolfdieter Lang, Jun 10 2021

Keywords

Comments

This is one of the bisections of sequence A343238. The other sequence is A344231.
This is a proper subsequence of A029718.
The primes in this sequence are given in A106865.
See A344231 for more details.
The reduced form [2, 2, 3] represents the proper (determinant +1) equivalence class of one of the two genera (genus II) of discriminant -20. The multiplicative generic characters for discriminant Disc = -20 have values Jacobi(a(n)|5) = -1 and Jacobi(-1|a(n)) = -1, for odd a(n) not divisible by 5. See Buell, p. 52.
The product of any two odd a(n), not divisible by 5, is congruent to {1,5} (mod 8). See Buell, 4), p. 51.
For this genus II of Disc = -20 the positive integers represented are given by 2^a*5^b*Product_{j=1..PI} (pI_j)^(eI(j))*Product_{k=1..PII}(pII_k)^(eII(k)), with a and b from {0, 1}, but if PI = PII = 0 (empty products are 1) then (a, b) = (1, 0) or (1, 1), giving a(1) = 2 or a(4) = 10. The odd primes pI_j are from A033205 and the odd primes pII_j from the odd primes of A106865. The exponents of the second product satisfy: if a = 1 then PII >= 0, and if PII >=1 then Sum_{k=1..PII} eII(j) is even. If a = 0 then PII >= 1 and this sum is odd.
The neighboring numbers k (twins) begin: [42, 43], [82, 83], [122, 123] [162, 163], [202, 203], [282, 283], ...
For the solutions (X, Y) of F2 = [2, 2, 3] properly representing k = a(n) see A344234.

References

  • D. A. Buell, Binary Quadratic Forms, Springer, 1989.
  • A. Scholz and B. Schoeneberg, Einführung in die Zahlentheorie, Sammlung Göschen Band 5131, Walter de Gruyter, 1973.

A029718 Numbers of form 2x^2 + 2xy + 3y^2.

Original entry on oeis.org

0, 2, 3, 7, 8, 10, 12, 15, 18, 23, 27, 28, 32, 35, 40, 42, 43, 47, 48, 50, 58, 60, 63, 67, 72, 75, 82, 83, 87, 90, 92, 98, 103, 107, 108, 112, 115, 122, 123, 127, 128, 135, 138, 140, 147, 160, 162, 163, 167, 168, 172, 175, 178, 183, 188, 192, 200, 202, 203, 207, 210
Offset: 1

Keywords

Comments

Numbers represented by quadratic form with Gram matrix [ 2, 1; 1, 3 ].

References

  • H. Cohn, A second course in number theory, John Wiley & Sons, Inc., New York-London, 1962. see page 3.

Crossrefs

Cf. A028927.
For primes see A106865.
For the properly represented numbers see A344232.

Formula

List contains 0 and all positive n such that 2*A035170(n) = A028586(n) is nonzero. - Michael Somos, Oct 21 2006

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Mar 29 2000
Showing 1-10 of 11 results. Next