cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A033205 Primes of form x^2 + 5*y^2.

Original entry on oeis.org

5, 29, 41, 61, 89, 101, 109, 149, 181, 229, 241, 269, 281, 349, 389, 401, 409, 421, 449, 461, 509, 521, 541, 569, 601, 641, 661, 701, 709, 761, 769, 809, 821, 829, 881, 929, 941, 1009, 1021, 1049, 1061, 1069, 1109, 1129, 1181, 1201, 1229, 1249, 1289, 1301, 1321, 1361, 1381, 1409, 1429, 1481, 1489
Offset: 1

Views

Author

Keywords

Comments

It is a classical result that p is of the form x^2 + 5y^2 if and only if p = 5 or p == 1 or 9 mod 20 (see Cox, page 33). - N. J. A. Sloane, Sep 20 2012
Except for 5, also primes of the form x^2 + 25y^2. See A140633. - T. D. Noe, May 19 2008
Or, 5 and all primes p that divide Fibonacci((p - 1)/2) = A121568(n). - Alexander Adamchuk, Aug 07 2006

References

  • David A. Cox, "Primes of the Form x^2 + n y^2", Wiley, 1989; see p. 33.

Crossrefs

Subsequence of A091729.
Primes in A020669 (numbers of form x^2+5y^2). Cf. A121568, A139643, A216815.
Cf. A029718, A106865 (in the same genus).

Programs

  • Magma
    [p: p in PrimesUpTo(2000) | NormEquation(5,p) eq true]; // Bruno Berselli, Jul 03 2016
    
  • Mathematica
    QuadPrimes2[1, 0, 5, 10000] (* see A106856 *)
  • PARI
    is(n)=my(k=n%20); n==5 || ((k==9 || k==9) && isprime(n)) \\ Charles R Greathouse IV, Feb 09 2017

Formula

A020669 INTERSECT A000040.
a(n) ~ 4n log n. - Charles R Greathouse IV, Nov 09 2012

A344232 All positive integers k properly represented by the positive definite binary quadratic form 2*X^2 + 2*X*Y + 3*Y^2 = k, in increasing order.

Original entry on oeis.org

2, 3, 7, 10, 15, 18, 23, 27, 35, 42, 43, 47, 58, 63, 67, 82, 83, 87, 90, 98, 103, 107, 115, 122, 123, 127, 135, 138, 147, 162, 163, 167, 178, 183, 202, 203, 207, 210, 215, 218, 223, 227, 235, 243, 258, 263, 267, 282, 283, 287, 290, 298, 303, 307, 315, 322, 327, 335, 343, 347, 362, 367, 378, 383, 387
Offset: 1

Views

Author

Wolfdieter Lang, Jun 10 2021

Keywords

Comments

This is one of the bisections of sequence A343238. The other sequence is A344231.
This is a proper subsequence of A029718.
The primes in this sequence are given in A106865.
See A344231 for more details.
The reduced form [2, 2, 3] represents the proper (determinant +1) equivalence class of one of the two genera (genus II) of discriminant -20. The multiplicative generic characters for discriminant Disc = -20 have values Jacobi(a(n)|5) = -1 and Jacobi(-1|a(n)) = -1, for odd a(n) not divisible by 5. See Buell, p. 52.
The product of any two odd a(n), not divisible by 5, is congruent to {1,5} (mod 8). See Buell, 4), p. 51.
For this genus II of Disc = -20 the positive integers represented are given by 2^a*5^b*Product_{j=1..PI} (pI_j)^(eI(j))*Product_{k=1..PII}(pII_k)^(eII(k)), with a and b from {0, 1}, but if PI = PII = 0 (empty products are 1) then (a, b) = (1, 0) or (1, 1), giving a(1) = 2 or a(4) = 10. The odd primes pI_j are from A033205 and the odd primes pII_j from the odd primes of A106865. The exponents of the second product satisfy: if a = 1 then PII >= 0, and if PII >=1 then Sum_{k=1..PII} eII(j) is even. If a = 0 then PII >= 1 and this sum is odd.
The neighboring numbers k (twins) begin: [42, 43], [82, 83], [122, 123] [162, 163], [202, 203], [282, 283], ...
For the solutions (X, Y) of F2 = [2, 2, 3] properly representing k = a(n) see A344234.

References

  • D. A. Buell, Binary Quadratic Forms, Springer, 1989.
  • A. Scholz and B. Schoeneberg, Einführung in die Zahlentheorie, Sammlung Göschen Band 5131, Walter de Gruyter, 1973.

Crossrefs

A242655 Numbers of the form 2x^2+2xy+3y^2 with x and y nonnegative.

Original entry on oeis.org

0, 2, 3, 7, 8, 12, 15, 18, 27, 28, 32, 35, 42, 43, 47, 48, 50, 58, 60, 63, 72, 75, 82, 83, 87, 90, 98, 103, 107, 108, 112, 115, 122, 123, 128, 135, 138, 140, 147, 162, 163, 167, 168, 172, 175, 183, 188, 192, 200, 202, 203, 207, 210, 218, 223, 232, 235, 240, 242, 243, 252, 258, 263, 267, 282, 283, 287, 288, 290, 298, 300
Offset: 1

Views

Author

N. J. A. Sloane, May 30 2014

Keywords

Comments

Discriminant = -20.

Crossrefs

For primes see A106864. Cf. A029718, A106865.
Showing 1-3 of 3 results.