A344234
Irregular triangle read by rows: row n gives the pairs of proper solutions (X, Y), with gcd(X, Y) = 1 and X >= 0, of the Diophantine equation 2*X^2 + 2*X*Y + 3*Y^2 = A344232(n), for n >= 1.
Original entry on oeis.org
1, 0, 0, 1, 1, -1, 1, 1, 2, -1, 1, -2, 2, 1, 3, -1, 1, 2, 3, -2, 1, -3, 2, -3, 3, 1, 4, -1, 1, 3, 4, -3, 1, -4, 3, 2, 3, -4, 5, -2, 4, 1, 5, -1, 5, 2, 7, -2, 4, 3, 7, -3, 1, 5, 6, 1, 6, -5, 7, -1, 3, 4, 7, -4, 1, -6, 5, -6
Offset: 1
The irregular triangle T(n, m) begins (A(n) = A344232(n)):
n A(n) \ m 1 2 3 4 5 6 7 8 ...
1, 2: 1 0
2, 3: 0 1 1 -1
3, 7: 1 1 2 -1
4, 10: 1 -2
5, 15: 2 1 3 -1
6, 18: 1 2 3 -2
7, 23: 1 -3 2 -3
8, 27: 3 1 4 -1
9, 35: 1 3 4 -3
10, 42: 1 -4 3 2 3 -4 5 -2
11, 43: 4 1 5 -1
12, 47: 2 3 5 -3
13, 58: 1 4 5 -4
14, 63: 2 -5 3 -5 5 1 6 -1
15, 67: 1 -5 4 -5
16, 82: 5 2 7 -2
17, 83: 4 3 7 -3
18, 87: 1 5 6 1 6 -5 7 -1
19, 90: 3 4 7 -4
20, 98: 1 -6 5 -6
...
n = 2: The prime 3 is a member of A139513, hence 2^1 = 2 solutions are listed. There are also the corresponding (-X, -Y) solutions.
n = 4: 10 = A344232(4) = A343238(8) = 2*5, A343240(8) = 1, hence there is 1 pair of proper solution with X >= 0. This is because neither 2 nor 5 are primes from A139513. There is also the solution (-1, 2).
n = 6: Prime 3 is a member of A139513, not prime 2. This there are 2 solutions listed. The solution (3, 0) does not appear; it is not proper.
n = 10: 42 = A344232(10) = A343238(19) = 2*3*7, A343240(19) = 2^2 = 4, hence there are 4 pairs of proper solution with X >= 0. 3 and 7 are primes from A139513.
A343238
All positive integer moduli a(n) for which the congruence x^2 == -5 (mod a(n)) is solvable for integer x (representatives from {0, 1, ..., a(n)-1}); ordered increasingly.
Original entry on oeis.org
1, 2, 3, 5, 6, 7, 9, 10, 14, 15, 18, 21, 23, 27, 29, 30, 35, 41, 42, 43, 45, 46, 47, 49, 54, 58, 61, 63, 67, 69, 70, 81, 82, 83, 86, 87, 89, 90, 94, 98, 101, 103, 105, 107, 109, 115, 122, 123, 126, 127, 129, 134, 135, 138, 141, 145, 147, 149, 161, 162, 163, 166, 167, 174, 178, 181, 183, 189, 201, 202
Offset: 1
a(3) = 3: two solutions 1 and 2.
a(7) = 3^2 = 9: two solutions 2 and 7.
a(8) = 10 = 2*5 only one solution 5.
a(53) = 135 = 5*3^3: two solutions 20 and 115.
- Tom M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, pp 121, 122.
A344231
Positive integers k properly represented by the positive definite binary quadratic form X^2 + 5*Y^2 = k, in increasing order.
Original entry on oeis.org
1, 5, 6, 9, 14, 21, 29, 30, 41, 45, 46, 49, 54, 61, 69, 70, 81, 86, 89, 94, 101, 105, 109, 126, 129, 134, 141, 145, 149, 161, 166, 174, 181, 189, 201, 205, 206, 214, 229, 230, 241, 245, 246, 249, 254, 261, 269, 270, 281, 294, 301, 305, 309, 321, 326, 329, 334, 345, 349, 366, 369, 381, 389, 401, 405
Offset: 1
- Tom M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, pp 121 - 122.
- D. A. Buell, Binary Quadratic Forms, Springer, 1989.
- A. Scholz and B. Schoeneberg, Einführung in die Zahlentheorie, Sammlung Göschen Band 5131, Walter de Gruyter, 1973.
Cf.
A000003,
A020669,
A033205,
A106865,
A225953,
A324251,
A343238,
A343239,
A343240,
A344232,
A344233.
A029718
Numbers of form 2x^2 + 2xy + 3y^2.
Original entry on oeis.org
0, 2, 3, 7, 8, 10, 12, 15, 18, 23, 27, 28, 32, 35, 40, 42, 43, 47, 48, 50, 58, 60, 63, 67, 72, 75, 82, 83, 87, 90, 92, 98, 103, 107, 108, 112, 115, 122, 123, 127, 128, 135, 138, 140, 147, 160, 162, 163, 167, 168, 172, 175, 178, 183, 188, 192, 200, 202, 203, 207, 210
Offset: 1
- H. Cohn, A second course in number theory, John Wiley & Sons, Inc., New York-London, 1962. see page 3.
For the properly represented numbers see
A344232.
More terms from Larry Reeves (larryr(AT)acm.org), Mar 29 2000
Showing 1-4 of 4 results.
Comments