cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A106856 Primes of the form x^2 + xy + 2y^2, with x and y nonnegative.

Original entry on oeis.org

2, 11, 23, 37, 43, 53, 71, 79, 107, 109, 127, 137, 149, 151, 163, 193, 197, 211, 233, 239, 263, 281, 317, 331, 337, 373, 389, 401, 421, 431, 443, 463, 487, 491, 499, 541, 547, 557, 569, 599, 613, 617, 641, 653, 659, 673, 683, 739, 743, 751, 757, 809, 821
Offset: 1

Views

Author

T. D. Noe, May 09 2005, Apr 28 2008

Keywords

Comments

Discriminant=-7. Binary quadratic forms ax^2 + bxy + cy^2 have discriminant d = b^2 - 4ac.
Consider sequences of primes produced by forms with -100
The Mathematica function QuadPrimes2 is useful for finding the primes less than "lim" represented by the positive definite quadratic form ax^2 + bxy + cy^2 for any a, b and c satisfying a>0, c>0, and discriminant d<0. It does this by examining all x>=0 and y>=0 in the ellipse ax^2 + bxy + cy^2 <= lim. To find the primes generated by positive and negative x and y, compute the union of QuadPrimes2[a,b,c,lim] and QuadPrimes2[a,-b,c,lim]. - T. D. Noe, Sep 01 2009
For other programs see the "Binary Quadratic Forms and OEIS" link.

References

  • David A. Cox, Primes of the Form x^2 + n y^2, Wiley, 1989.
  • L. E. Dickson, History of the Theory of Numbers, Vol. 3, Chelsea, 1923.

Crossrefs

Discriminants in the range -3 to -100: A007645 (d=-3), A002313 (d=-4), A045373, A106856 (d=-7), A033203 (d=-8), A056874, A106857 (d=-11), A002476 (d=-12), A033212, A106858-A106861 (d=-15), A002144, A002313 (d=-16), A106862-A106863 (d=-19), A033205, A106864-A106865 (d=-20), A106866-A106869 (d=-23), A033199, A084865 (d=-24), A002476, A106870 (d=-27), A033207 (d=-28), A033221, A106871-A106874 (d=-31), A007519, A007520, A106875-A106876 (d=-32), A106877-A106881 (d=-35), A040117, A068228, A106882 (d=-36), A033227, A106883-A106888 (d=-39), A033201, A106889 (d=-40), A106890-A106891 (d=-43), A033209, A106282, A106892-A106893 (d=-44), A033232, A106894-A106900 (d=-47), A068229 (d=-48), A106901-A106904 (d=-51), A033210, A106905-A106906 (d=-52), A033235, A106907-A106913 (d=-55), A033211, A106914-A106917 (d=-56), A106918-A106922 (d=-59), A033212, A106859 (d=-60), A106923-A106930 (d=-63), A007521, A106931 (d=-64), A106932-A106933 (d=-67), A033213, A106934-A106938 (d=-68), A033246, A106939-A106948 (d=-71), A106949-A106950 (d=-72), A033212, A106951-A106952 (d=-75), A033214, A106953-A106955 (d=-76), A033251, A106956-A106962 (d=-79), A047650, A106963-A106965 (d=-80), A106966-A106970 (d=-83), A033215, A102271, A102273, A106971-A106974 (d=-84), A033256, A106975-A106983 (d=-87), A033216, A106984 (d=-88), A106985-A106989 (d=-91), A033217 (d=-92), A033206, A106990-A107001 (d=-95), A107002-A107008 (d=-96), A107009-A107013 (d=-99).
Other collections of quadratic forms: A139643, A139827.
For a more comprehensive list of sequences giving numbers and/or primes represented by binary quadratic forms, see the "Binary Quadratic Forms and OEIS" link.
Cf. also A242660.

Programs

  • Mathematica
    QuadPrimes2[a_, b_, c_, lmt_] := Module[{p, d, lst = {}, xMax, yMax}, d = b^2 - 4a*c; If[a > 0 && c > 0 && d < 0, xMax = Sqrt[lmt/a]*(1+Abs[b]/Floor[Sqrt[-d]])]; Do[ If[ 4c*lmt + d*x^2 >= 0, yMax = ((-b)*x + Sqrt[4c*lmt + d*x^2])/(2c), yMax = 0 ]; Do[p = a*x^2 + b*x*y + c*y^2; If[ PrimeQ[ p]  && p <= lmt && !MemberQ[ lst, p], AppendTo[ lst, p]], {y, 0, yMax}], {x, 0, xMax}]; Sort[ lst]];
    QuadPrimes2[1, 1, 2, 1000]
    (This is a corrected version of the old, incorrect, program QuadPrimes. - N. J. A. Sloane, Jun 15 2014)
    max = 1000; Table[yy = {y, 1, Floor[Sqrt[8 max - 7 x^2]/4 - x/4]}; Table[ x^2 + x y + 2 y^2, yy // Evaluate], {x, 0, Floor[Sqrt[max]]}] // Flatten // Union // Select[#, PrimeQ]& (* Jean-François Alcover, Oct 04 2018 *)
  • PARI
    list(lim)=my(q=Qfb(1,1,2), v=List([2])); forprime(p=2, lim, if(vecmin(qfbsolve(q, p))>0, listput(v,p))); Vec(v) \\ Charles R Greathouse IV, Aug 05 2016

Extensions

Removed old Mathematica programs - T. D. Noe, Sep 09 2009
Edited (pointed out error in QuadPrimes, added new version of program, checked and extended b-file). - N. J. A. Sloane, Jun 06 2014

A191026 Primes p that have Jacobi symbol (p|35) = 1.

Original entry on oeis.org

3, 11, 13, 17, 29, 47, 71, 73, 79, 83, 97, 103, 109, 149, 151, 157, 167, 173, 179, 191, 211, 223, 227, 239, 257, 281, 283, 293, 307, 313, 331, 353, 359, 367, 379, 383, 389, 397, 401, 421, 431, 433, 449, 467, 491, 499, 503, 523, 541, 563, 569, 571, 577, 587
Offset: 1

Author

T. D. Noe, May 24 2011

Keywords

Comments

Originally incorrectly named "Primes which are squares (mod 35)", which is subsequence A106881. - M. F. Hasler, Jan 15 2016

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(587) | JacobiSymbol(p,35) eq 1]; // Vincenzo Librandi, Sep 10 2012
    
  • Mathematica
    Select[Prime[Range[200]], JacobiSymbol[#,35]==1&]
  • PARI
    is(p)=kronecker(p, 35)==1&&isprime(p) \\ M. F. Hasler, Jan 15 2016

Extensions

Definition corrected (following an observation by David Broadhurst) by M. F. Hasler, Jan 15 2016

A191043 Primes p that have Kronecker symbol (p|70) = 1.

Original entry on oeis.org

17, 19, 37, 43, 47, 53, 59, 61, 67, 71, 73, 79, 97, 101, 103, 107, 131, 139, 151, 163, 167, 181, 191, 197, 223, 229, 239, 251, 257, 269, 277, 281, 313, 317, 347, 349, 353, 359, 367, 373, 383, 401, 419, 431, 433, 443, 449, 461, 503, 509, 547, 557, 569, 577
Offset: 1

Author

T. D. Noe, May 25 2011

Keywords

Comments

Originally incorrectly named "primes which are squares mod 70", which is sequence A106881. - M. F. Hasler, Jan 15 2016

Programs

  • Magma
    [p: p in PrimesUpTo(577) | KroneckerSymbol(p, 70) eq 1]; // Vincenzo Librandi, Sep 11 2012
    
  • Mathematica
    Select[Prime[Range[200]], JacobiSymbol[#,70]==1&]
  • PARI
    select(p->kronecker(p, 70)==1&&isprime(p), [1..1000]) \\ This is to provide a generic characteristic function ("is_A191043") as 1st arg of select(), there are other ways to produce the sequence more efficiently. - M. F. Hasler, Jan 15 2016

Extensions

Definition corrected (following an observation by David Broadhurst) by M. F. Hasler, Jan 15 2016

A267455 Primes which are a square (mod 39).

Original entry on oeis.org

3, 13, 43, 61, 79, 103, 127, 139, 157, 181, 199, 211, 277, 283, 313, 337, 367, 373, 433, 439, 523, 547, 571, 601, 607, 673, 727, 751, 757, 823, 829, 859, 883, 907, 919, 937, 991, 997, 1039, 1063, 1069, 1093, 1117, 1153, 1171, 1213, 1231, 1249, 1291, 1297, 1303, 1327, 1381, 1429, 1447, 1453, 1459, 1483
Offset: 1

Author

M. F. Hasler, Jan 15 2016

Keywords

Comments

Motivated by the former (incorrect) definition of A191029.
Also, primes p which have Legendre symbols (p|3) = (p|13) = 1, together with 3 and 13.
Apparently this contains the 3 plus the elements of A139494. - R. J. Mathar, May 28 2025

Crossrefs

Programs

  • Mathematica
    Join[{3, 13}, Select[Prime[Range[500]], JacobiSymbol[#, {3, 13}] == {1, 1} &]] (* Paolo Xausa, May 29 2025 *)
  • PARI
    select(p->issquare(Mod(p,39))&&isprime(p),[1..1000])

A106880 Primes of the form x^2+xy+9y^2, with x and y nonnegative.

Original entry on oeis.org

11, 29, 71, 109, 149, 151, 179, 191, 211, 239, 281, 331, 359, 379, 389, 401, 421, 449, 491, 499, 541, 571, 599, 631, 641, 659, 701, 739, 751, 809, 821, 911, 919, 991, 1009, 1019, 1031, 1051, 1129, 1171, 1201, 1229, 1289, 1381, 1409, 1429, 1439, 1451
Offset: 1

Author

T. D. Noe, May 09 2005

Keywords

Comments

Discriminant=-35.

Crossrefs

Cf. A106881.

Programs

  • Mathematica
    QuadPrimes2[1, 1, 9, 10000] (* see A106856 *)

A243178 Numbers of the form x^2+xy+9y^2.

Original entry on oeis.org

0, 1, 4, 9, 11, 15, 16, 21, 25, 29, 35, 36, 39, 44, 49, 51, 60, 64, 65, 71, 79, 81, 84, 85, 91, 99, 100, 109, 116, 119, 121, 135, 140, 141, 144, 149, 151, 156, 165, 169, 176, 179, 189, 191, 196, 204, 211, 219, 221, 225, 231, 235, 239, 240, 249, 256, 260, 261, 275, 281, 284, 289, 291, 309, 315, 316, 319, 324, 329, 331, 336, 340, 351, 359, 361, 364, 365, 375
Offset: 1

Author

N. J. A. Sloane, Jun 02 2014

Keywords

Comments

Discriminant -35.

Crossrefs

Primes: A106881.

Programs

  • Mathematica
    ofTheFormQ[n_] := Reduce[n == x^2 + x*y + 9*y^2, {x, y}, Integers] =!= False; Select[Range[0, 400], ofTheFormQ] (* Jean-François Alcover, Jun 04 2014 *)
Showing 1-6 of 6 results.