A106856 Primes of the form x^2 + xy + 2y^2, with x and y nonnegative.
2, 11, 23, 37, 43, 53, 71, 79, 107, 109, 127, 137, 149, 151, 163, 193, 197, 211, 233, 239, 263, 281, 317, 331, 337, 373, 389, 401, 421, 431, 443, 463, 487, 491, 499, 541, 547, 557, 569, 599, 613, 617, 641, 653, 659, 673, 683, 739, 743, 751, 757, 809, 821
Offset: 1
A191026 Primes p that have Jacobi symbol (p|35) = 1.
3, 11, 13, 17, 29, 47, 71, 73, 79, 83, 97, 103, 109, 149, 151, 157, 167, 173, 179, 191, 211, 223, 227, 239, 257, 281, 283, 293, 307, 313, 331, 353, 359, 367, 379, 383, 389, 397, 401, 421, 431, 433, 449, 467, 491, 499, 503, 523, 541, 563, 569, 571, 577, 587
Offset: 1
Comments
Originally incorrectly named "Primes which are squares (mod 35)", which is subsequence A106881. - M. F. Hasler, Jan 15 2016
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Programs
-
Magma
[p: p in PrimesUpTo(587) | JacobiSymbol(p,35) eq 1]; // Vincenzo Librandi, Sep 10 2012
-
Mathematica
Select[Prime[Range[200]], JacobiSymbol[#,35]==1&]
-
PARI
is(p)=kronecker(p, 35)==1&&isprime(p) \\ M. F. Hasler, Jan 15 2016
Extensions
Definition corrected (following an observation by David Broadhurst) by M. F. Hasler, Jan 15 2016
A191043 Primes p that have Kronecker symbol (p|70) = 1.
17, 19, 37, 43, 47, 53, 59, 61, 67, 71, 73, 79, 97, 101, 103, 107, 131, 139, 151, 163, 167, 181, 191, 197, 223, 229, 239, 251, 257, 269, 277, 281, 313, 317, 347, 349, 353, 359, 367, 373, 383, 401, 419, 431, 433, 443, 449, 461, 503, 509, 547, 557, 569, 577
Offset: 1
Comments
Originally incorrectly named "primes which are squares mod 70", which is sequence A106881. - M. F. Hasler, Jan 15 2016
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Magma
[p: p in PrimesUpTo(577) | KroneckerSymbol(p, 70) eq 1]; // Vincenzo Librandi, Sep 11 2012
-
Mathematica
Select[Prime[Range[200]], JacobiSymbol[#,70]==1&]
-
PARI
select(p->kronecker(p, 70)==1&&isprime(p), [1..1000]) \\ This is to provide a generic characteristic function ("is_A191043") as 1st arg of select(), there are other ways to produce the sequence more efficiently. - M. F. Hasler, Jan 15 2016
Extensions
Definition corrected (following an observation by David Broadhurst) by M. F. Hasler, Jan 15 2016
A267455 Primes which are a square (mod 39).
3, 13, 43, 61, 79, 103, 127, 139, 157, 181, 199, 211, 277, 283, 313, 337, 367, 373, 433, 439, 523, 547, 571, 601, 607, 673, 727, 751, 757, 823, 829, 859, 883, 907, 919, 937, 991, 997, 1039, 1063, 1069, 1093, 1117, 1153, 1171, 1213, 1231, 1249, 1291, 1297, 1303, 1327, 1381, 1429, 1447, 1453, 1459, 1483
Offset: 1
Comments
Motivated by the former (incorrect) definition of A191029.
Also, primes p which have Legendre symbols (p|3) = (p|13) = 1, together with 3 and 13.
Apparently this contains the 3 plus the elements of A139494. - R. J. Mathar, May 28 2025
Links
- Paolo Xausa, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Join[{3, 13}, Select[Prime[Range[500]], JacobiSymbol[#, {3, 13}] == {1, 1} &]] (* Paolo Xausa, May 29 2025 *)
-
PARI
select(p->issquare(Mod(p,39))&&isprime(p),[1..1000])
A106880 Primes of the form x^2+xy+9y^2, with x and y nonnegative.
11, 29, 71, 109, 149, 151, 179, 191, 211, 239, 281, 331, 359, 379, 389, 401, 421, 449, 491, 499, 541, 571, 599, 631, 641, 659, 701, 739, 751, 809, 821, 911, 919, 991, 1009, 1019, 1031, 1051, 1129, 1171, 1201, 1229, 1289, 1381, 1409, 1429, 1439, 1451
Offset: 1
Comments
Discriminant=-35.
Links
- Vincenzo Librandi and Ray Chandler, Table of n, a(n) for n = 1..10000 [First 1000 terms from Vincenzo Librandi]
- N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
Crossrefs
Cf. A106881.
Programs
-
Mathematica
QuadPrimes2[1, 1, 9, 10000] (* see A106856 *)
A243178 Numbers of the form x^2+xy+9y^2.
0, 1, 4, 9, 11, 15, 16, 21, 25, 29, 35, 36, 39, 44, 49, 51, 60, 64, 65, 71, 79, 81, 84, 85, 91, 99, 100, 109, 116, 119, 121, 135, 140, 141, 144, 149, 151, 156, 165, 169, 176, 179, 189, 191, 196, 204, 211, 219, 221, 225, 231, 235, 239, 240, 249, 256, 260, 261, 275, 281, 284, 289, 291, 309, 315, 316, 319, 324, 329, 331, 336, 340, 351, 359, 361, 364, 365, 375
Offset: 1
Keywords
Comments
Discriminant -35.
Links
- N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
Crossrefs
Primes: A106881.
Programs
-
Mathematica
ofTheFormQ[n_] := Reduce[n == x^2 + x*y + 9*y^2, {x, y}, Integers] =!= False; Select[Range[0, 400], ofTheFormQ] (* Jean-François Alcover, Jun 04 2014 *)
Comments
References
Links
Crossrefs
Programs
Mathematica
PARI
Extensions