A106856 Primes of the form x^2 + xy + 2y^2, with x and y nonnegative.
2, 11, 23, 37, 43, 53, 71, 79, 107, 109, 127, 137, 149, 151, 163, 193, 197, 211, 233, 239, 263, 281, 317, 331, 337, 373, 389, 401, 421, 431, 443, 463, 487, 491, 499, 541, 547, 557, 569, 599, 613, 617, 641, 653, 659, 673, 683, 739, 743, 751, 757, 809, 821
Offset: 1
A020674 Numbers of the form 2*x^2 + 5*y^2.
0, 2, 5, 7, 8, 13, 18, 20, 22, 23, 28, 32, 37, 38, 45, 47, 50, 52, 53, 55, 63, 70, 72, 77, 80, 82, 88, 92, 95, 98, 103, 112, 117, 118, 125, 127, 128, 130, 133, 143, 148, 152, 157, 162, 167, 173, 175, 178, 180, 182, 188, 197, 198, 200, 205, 207, 208, 212, 220, 223, 230, 242
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..7000 (corrected by _Sean A. Irvine_, Jun 07 2019)
- N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
Programs
-
Mathematica
Union[2*First[#]+5*Last[#]&/@(Tuples[Range[0,10],2]^2)] (* Harvey P. Dale, May 09 2012 *)
A317642 Expansion of theta_3(q^2)*theta_3(q^5), where theta_3() is the Jacobi theta function.
1, 0, 2, 0, 0, 2, 0, 4, 2, 0, 0, 0, 0, 4, 0, 0, 0, 0, 2, 0, 2, 0, 4, 4, 0, 0, 0, 0, 4, 0, 0, 0, 2, 0, 0, 0, 0, 4, 4, 0, 0, 0, 0, 0, 0, 2, 0, 4, 0, 0, 2, 0, 4, 4, 0, 4, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 4, 0, 2, 0, 0, 0, 0, 8, 0, 0, 2, 0, 4, 0, 0, 0, 0, 0, 4, 0, 0, 0, 4, 0, 0, 4, 0, 0, 6
Offset: 0
Keywords
Comments
Number of integer solutions to the equation 2*x^2 + 5*y^2 = n.
Examples
G.f. = 1 + 2*q^2 + 2*q^5 + 4*q^7 + 2*q^8 + 4*q^13 + 2*q^18 + 2*q^20 + 4*q^22 + ...
Links
- N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
- Eric Weisstein's World of Mathematics, Jacobi Theta Functions
Programs
-
Mathematica
nmax = 98; CoefficientList[Series[EllipticTheta[3, 0, q^2] EllipticTheta[3, 0, q^5], {q, 0, nmax}], q] nmax = 98; CoefficientList[Series[QPochhammer[-q^2, -q^2] QPochhammer[-q^5, -q^5]/(QPochhammer[q^2, -q^2] QPochhammer[q^5, -q^5]), {q, 0, nmax}], q]
Formula
G.f.: Product_{k>=1} (1 + x^(4*k-2))^2*(1 - x^(4*k))*(1 + x^(10*k-5))^2*(1 - x^(10*k)).
Comments
References
Links
Crossrefs
Programs
Mathematica
PARI
Extensions