cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A107008 Primes of the form x^2 + 24*y^2.

Original entry on oeis.org

73, 97, 193, 241, 313, 337, 409, 433, 457, 577, 601, 673, 769, 937, 1009, 1033, 1129, 1153, 1201, 1249, 1297, 1321, 1489, 1609, 1657, 1753, 1777, 1801, 1873, 1993, 2017, 2089, 2113, 2137, 2161, 2281, 2377, 2473, 2521, 2593, 2617, 2689, 2713
Offset: 1

Views

Author

T. D. Noe, May 09 2005

Keywords

Comments

Presumably this is the same as primes congruent to 1 mod 24, so a(n) = 24*A111174(n) + 1. - N. J. A. Sloane, Jul 11 2008. Checked for all terms up to 2 million. - Vladimir Joseph Stephan Orlovsky, May 18 2011.
Discriminant = -96.
Also primes of the forms x^2 + 48*y^2 and x^2 + 72*y^2. See A140633. - T. D. Noe, May 19 2008
Primes of the quadratic form are a subset of the primes congruent to 1 (mod 24). [Proof. For 0 <= x, y <= 23, the only values mod 24 that x^2 + 24*y^2 can take are 0, 1, 4, 9, 12 or 16. All of these r except 1 have gcd(r, 24) > 1 so if x^2 + 24*y^2 is prime its remainder mod 24 must be 1.] - David A. Corneth, Jun 08 2020
More advanced mathematics seems to be needed to determine whether this sequence lists all primes congruent to 1 (mod 24). Note the significance of 24 being a convenient number, as described in A000926. See also Sloane et al., Binary Quadratic Forms and OEIS, which explains how the table in A139642 may be used for this determination. - Peter Munn, Jun 21 2020
Primes == 1 (mod 2^3*3) are the intersection of the primes == 1 (mod 2^3) in A007519 and the primes == 1 (mod 3) in A002476, by the Chinese remainder theorem. - R. J. Mathar, Jun 11 2020

Crossrefs

Subset of A033199 (2y here = y there).
Is this the same as A141375?
See also the cross-references in A140633.

Programs

  • Mathematica
    QuadPrimes[1, 0, 24, 10000] (* see A106856 *)
  • PARI
    is(n) = isprime(n) && #qfbsolve(Qfb(1, 0, 24), n) == 2 \\ David A. Corneth, Jun 21 2020

Extensions

Recomputed b-file, deleted incorrect Mma program. - N. J. A. Sloane, Jun 08 2014