A107021 Primes p such that 2p+1, 4p+3, 6p+5, 8p+7 are all primes.
2, 6449, 12119, 19709, 30389, 74699, 107699, 133499, 143609, 167759, 175349, 206369, 210209, 229739, 244589, 254279, 334289, 422069, 528509, 541529, 607319, 641969, 658349, 751529, 810539, 810809, 812849, 926669, 934259, 956909, 968729
Offset: 1
Keywords
Links
- Donovan Johnson, Table of n, a(n) for n = 1..1000
Crossrefs
Cf. A107024: p, 2p+1, 4p+3, 6p+5, 8p+7, 10p+9, 12p+11, 14p+13 all prime; A107023: p, 2p+1, 4p+3, 6p+5, 8p+7, 10p+9, 12p+11 all prime; A107022: p, 2p+1, 4p+3, 6p+5, 8p+7, 10p+9 all prime; A107020: p, 2p+1, 4p+3, 6p+5 all prime; A007700: p, 2p+1, 4p+3 all prime; A005384: p, 2p+1 prime (p = Sophie Germain primes).
Programs
-
Magma
[p: p in PrimesUpTo(1000000)| IsPrime(2*p+1) and IsPrime(4*p+3) and IsPrime(6*p+5) and IsPrime(8*p+7)]; // Vincenzo Librandi, Nov 13 2010
-
Mathematica
fQ[n_]:=And@@PrimeQ[{2n+1,4n+3,6n+5,8n+7}];Select[Prime@Range@77000,fQ] (* Harvey P. Dale, Dec 16 2010 *)
Extensions
More terms from Vincenzo Librandi, Apr 01 2010