cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A107021 Primes p such that 2p+1, 4p+3, 6p+5, 8p+7 are all primes.

Original entry on oeis.org

2, 6449, 12119, 19709, 30389, 74699, 107699, 133499, 143609, 167759, 175349, 206369, 210209, 229739, 244589, 254279, 334289, 422069, 528509, 541529, 607319, 641969, 658349, 751529, 810539, 810809, 812849, 926669, 934259, 956909, 968729
Offset: 1

Views

Author

Zak Seidov, May 09 2005

Keywords

Crossrefs

Cf. A107024: p, 2p+1, 4p+3, 6p+5, 8p+7, 10p+9, 12p+11, 14p+13 all prime; A107023: p, 2p+1, 4p+3, 6p+5, 8p+7, 10p+9, 12p+11 all prime; A107022: p, 2p+1, 4p+3, 6p+5, 8p+7, 10p+9 all prime; A107020: p, 2p+1, 4p+3, 6p+5 all prime; A007700: p, 2p+1, 4p+3 all prime; A005384: p, 2p+1 prime (p = Sophie Germain primes).

Programs

  • Magma
    [p: p in PrimesUpTo(1000000)| IsPrime(2*p+1) and IsPrime(4*p+3) and IsPrime(6*p+5) and IsPrime(8*p+7)]; // Vincenzo Librandi, Nov 13 2010
  • Mathematica
    fQ[n_]:=And@@PrimeQ[{2n+1,4n+3,6n+5,8n+7}];Select[Prime@Range@77000,fQ] (* Harvey P. Dale, Dec 16 2010 *)

Extensions

More terms from Vincenzo Librandi, Apr 01 2010

A107020 Primes p such that 2p+1, 4p+3, 6p+5 are all primes.

Original entry on oeis.org

2, 11, 41, 1901, 2459, 5081, 5849, 6131, 6449, 8969, 9221, 10691, 12119, 13229, 14009, 14321, 14669, 15161, 18461, 19709, 20411, 21179, 22271, 23099, 24551, 25601, 30389, 37991, 39419, 41381, 43691, 44699, 52289, 55631, 56081, 58979
Offset: 1

Views

Author

Zak Seidov, May 09 2005

Keywords

Crossrefs

Cf. A107024: p, 2p+1, 4p+3, 6p+5, 8p+7, 10p+9, 12p+11, 14p+13 all prime; A107023: p, 2p+1, 4p+3, 6p+5, 8p+7, 10p+9, 12p+11 all prime; A107022: p, 2p+1, 4p+3, 6p+5, 8p+7, 10p+9 all prime; A107020: p, 2p+1, 4p+3, 6p+5, 8p+7 all prime; A007700: p, 2p+1, 4p+3 all prime; A005384: p, 2p+1 prime (p = Sophie Germain primes).

Programs

  • Magma
    [p: p in PrimesUpTo(1000000)| IsPrime(2*p+1) and IsPrime(4*p+3) and IsPrime(6*p+5) ]; // Vincenzo Librandi, Nov 13 2010
  • Mathematica
    Select[Range[60000],AllTrue[{#,2#+1,4#+3,6#+5},PrimeQ]&] (* James C. McMahon, Feb 09 2024 *)

Extensions

More terms from Vincenzo Librandi, Apr 01 2010

A107023 Primes p such that 2p+1, 4p+3, 6p+5, 8p+7, 10p+9, 12p+11 are all primes.

Original entry on oeis.org

4094999, 9080189, 10957169, 11148899, 15917579, 19422059, 37267229, 37622339, 58680929, 63196349, 64595369, 66383519, 108463739, 177109379, 186977699, 189997079, 196068179, 228875849, 251891639, 261703889, 271031669, 310143959
Offset: 1

Views

Author

Zak Seidov, May 09 2005, Mar 08 2007

Keywords

Examples

			a(1) = p = 4094999 is a term because numbers i*p+(i-1), i=2(2)12 8189999,16379999,24569999,32759999,40949999,49139999 are all primes.
		

Crossrefs

Cf. A107024: p, 2p+1, 4p+3, 6p+5, 8p+7, 10p+9, 12p+11, 14p+13 all prime; A107022: p, 2p+1, 4p+3, 6p+5, 8p+7, 10p+9 all prime; A107021: p, 2p+1, 4p+3, 6p+5, 8p+7 all prime;A107020: p, 2p+1, 4p+3, 6p+5 all prime; A007700: p, 2p+1, 4p+3 all prime; A005384: p, 2p+1 prime (p = Sophie Germain primes).

Programs

  • Mathematica
    s={};Do[p=Prime[i]; If[Union[PrimeQ[Table[i*p+(i-1),{i,2,12,2}]]]=={True},AppendTo[s,p]],{i,289435,1236230}];s
    With[{t=Table[2n #+(2n-1),{n,6}]},Select[Prime[ Range[ 168*10^5]], AllTrue[ t,PrimeQ]&]] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Feb 14 2018 *)

A107024 Primes p such that 2p+1, 4p+3, 6p+5, 8p+7, 10p+9, 12p+11, 14p+13 are all primes.

Original entry on oeis.org

4094999, 9080189, 63196349, 66383519, 177109379, 196068179, 310143959, 389825729, 528083219, 909696059, 937924259, 1080610439, 1318820159, 1342772969, 1824166469, 1921977329
Offset: 1

Views

Author

Zak Seidov, May 09 2005

Keywords

Crossrefs

Cf. A107023: p, 2p+1, 4p+3, 6p+5, 8p+7, 10p+9, 12p+11 all prime; A107022: p, 2p+1, 4p+3, 6p+5, 8p+7, 10p+9 all prime; A107021: p, 2p+1, 4p+3, 6p+5, 8p+7 all prime; A107020: p, 2p+1, 4p+3, 6p+5 all prime; A007700: p, 2p+1, 4p+3 all prime; A005384: p, 2p+1 prime (p = Sophie Germain primes).
Showing 1-4 of 4 results.