cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A107075 Centered square numbers that are also centered pentagonal numbers.

Original entry on oeis.org

1, 181, 58141, 18721081, 6028129801, 1941039074701, 625008553923781, 201250813324382641, 64802136881897286481, 20866086825157601864101, 6718815155563865902953901, 2163437614004739663149291881
Offset: 1

Views

Author

Richard Choulet, Aug 30 2007, Sep 20 2007

Keywords

Comments

The centered square numbers are n^2 + (n+1)^2 while the centered pentagonal numbers are (5*r^2 + 5*r + 2)/2. A number has both properties iff 5*(2*r+1)^2 = (4*n+2)^2 + 1. We solve the equation 5*Y^2 - 1 = X^2 whose solutions in positive integers are given by A075796 and A007805 respectively. The r values are 0,8,..., i.e., A053606. The n values define A119032.

Crossrefs

Programs

  • Maple
    a:= n-> (Matrix([181,1,1]). Matrix([[323,1,0], [ -323,0,1], [1,0,0]])^n)[1,3]: seq(a(n), n=1..20); # Alois P. Heinz, Aug 14 2008
  • Mathematica
    LinearRecurrence[{323,-323,1},{1,181,58141},20] (* Harvey P. Dale, Nov 15 2018 *)

Formula

G.f.: (z*(1-142*z+z^2))/((1-z)*(1-322*z+z^2)).
a(n+2) = 322*a(n+1)-a(n)-140 with a(1)=1 and a(2)=181.
a(n+1) = 161*a(n)-70+18*(80*a(n)^2-70*a(n)+15)^0.5.
a(n) = (14+(9-4*sqrt(5))^(2*n-1)+(9+4*sqrt(5))^(2*n-1))/32. - Gerry Martens, Jun 06 2015

Extensions

More terms from Alois P. Heinz, Aug 14 2008