A107102 Matrix inverse of A100862.
1, -1, 1, 2, -3, 1, -7, 12, -6, 1, 37, -67, 39, -10, 1, -266, 495, -310, 95, -15, 1, 2431, -4596, 3000, -1010, 195, -21, 1, -27007, 51583, -34566, 12320, -2660, 357, -28, 1, 353522, -680037, 463981, -171766, 39795, -6062, 602, -36, 1, -5329837, 10306152, -7124454, 2709525, -658791, 108927, -12432, 954
Offset: 0
Examples
Triangle begins: 1; -1,1; 2,-3,1; -7,12,-6,1; 37,-67,39,-10,1; -266,495,-310,95,-15,1; 2431,-4596,3000,-1010,195,-21,1; -27007,51583,-34566,12320,-2660,357,-28,1; ... and is the matrix inverse of A100862: 1; 1,1; 1,3,1; 1,6,6,1; 1,10,21,10,1; 1,15,55,55,15,1; ...
Programs
-
PARI
{T(n,k)=local(X=x+x*O(x^n),Y=y+y*O(y^n));(matrix(n+1,n+1,m,j,if(m>=j, (m-1)!*polcoeff(polcoeff(exp(X+Y*X^2/2+X*Y),m-1,x),j-1,y)))^-1)[n+1,k+1]}
Formula
E.g.f.: exp((1-y)*(1-sqrt(1+2*x))). [Vladeta Jovovic, Dec 13 2008]
Comments