cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A107106 Divide A036039(n) by A036040(n).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 6, 2, 1, 1, 1, 24, 6, 2, 2, 1, 1, 1, 120, 24, 6, 4, 6, 2, 1, 2, 1, 1, 1, 720, 120, 24, 12, 24, 6, 4, 2, 6, 2, 1, 2, 1, 1, 1, 5040, 720, 120, 48, 36, 120, 24, 12, 6, 4, 24, 6, 4, 2, 1, 6, 2, 1, 2, 1, 1, 1, 40320, 5040, 720, 240, 144, 720, 120, 48, 36, 24, 12, 8, 120, 24, 12
Offset: 1

Views

Author

Alford Arnold, May 12 2005

Keywords

Comments

A107107 gives the row sums. - R. J. Mathar, Aug 13 2007
This array is the first one (K=1) of a family of partition number arrays called M31(1). For M31(2) see A134133 = M_3(2)/M_3.

Examples

			a(36) = 280/70 = 4.
As array: [1];[1,1];[2,1,1];[6,2,1,1,1];[24,6,2,2,1,1,1];[120,24,6,4,6,2,1,2,1,1,1];...
		

Crossrefs

Cf. A107107.

Programs

  • Maple
    sortAbrSteg := proc(L1,L2) local i ; if nops(L1) < nops(L2) then RETURN(true) ; elif nops(L2) < nops(L1) then RETURN(false) ; else for i from 1 to nops(L1) do if op(i,L1) < op(i,L2) then RETURN(false) ; fi ; od ; RETURN(true) ; fi ; end: M2overM3 := proc(L) local n,k,an,resul; n := add(i,i=L) ; resul := 1 ; for k from 1 to n do an := add(1-min(abs(j-k),1),j=L) ; resul := resul* (factorial(k-1))^an ; od ; end: A107106 := proc(n,k) local prts,m ; prts := combinat[partition](n) ; prts := sort(prts, sortAbrSteg) ; if k <= nops(prts) then M2overM3(op(k,prts)) ; else 0 ; fi ; end: for n from 1 to 10 do for k from 1 to combinat[numbpart](n) do a:=A107106(n,k) ; printf("%d,",a) ; od; od ; # R. J. Mathar, Aug 13 2007
  • Mathematica
    aspartitions[n_] := Reverse /@ Sort[Sort /@ IntegerPartitions[n]];
    A036039[n_] := n!/(Times @@ #)& /@ ((#! Range[n]^#)& /@ Function[par, Count[par, #]& /@ Range[n]] /@ aspartitions[n]);
    runs[li : {__Integer}] := ((Length /@ Split[#]))&[Sort@li];
    A036040[n_] := Module[{temp}, temp = Map[Reverse, Sort@(Sort /@ IntegerPartitions[n]), {1}]; Apply[Multinomial, temp, {1}]/Apply[Times, (runs /@ temp)!, {1}]];
    T[n_] := A036039[n]/A036040[n];
    Table[T[n], {n, 1, 10}] // Flatten
    (* Jean-François Alcover, Jun 10 2023, after Wouter Meeussen in A036039 *)

Formula

a(n) = A036039(n) / A036040(n).

Extensions

Corrected and extended by R. J. Mathar, Aug 13 2007
a(75) and a(76) swapped (first 36, then 24) by Wolfdieter Lang, Sep 22 2008

A144351 Lower triangular array called S1hat(1) related to partition number array A107106.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 6, 3, 1, 1, 24, 8, 3, 1, 1, 120, 34, 9, 3, 1, 1, 720, 156, 36, 9, 3, 1, 1, 5040, 924, 166, 37, 9, 3, 1, 1, 40320, 6144, 968, 168, 37, 9, 3, 1, 1, 362880, 48096, 6372, 978, 169, 37, 9, 3, 1, 1, 3628800, 420480, 49368, 6416, 980, 169, 37, 9, 3, 1, 1, 39916800, 4134240
Offset: 1

Views

Author

Wolfdieter Lang Oct 09 2008

Keywords

Comments

If in the partition array M31hat(1):=A107106 entries with the same parts number m are summed one obtains this triangle of numbers S1hat(1). In the same way the signless Stirling1 triangle |A008275| is obtained from the partition array M_2 = A036039.
The first three columns are A000142(n-1) (factorials), A024419 (guess), A144352.

Examples

			[1];[1,1];[2,1,1];[6,3,1,1];[24,8,3,1,1];...
		

Crossrefs

Row sums A107107.
A134134 (S1hat(2)= S2'(2)).

Formula

a(n,m)=sum(product(|S1(1;j,1)|^e(n,m,q,j),j=1..n),q=1..p(n,m)) if n>=m>=1, else 0. Here p(n,m)=A008284(n,m), the number of m parts partitions of n and e(n,m,q,j) is the exponent of j in the q-th m part partition of n. |S1(1,n,1)|= |A008275(n,1)| = A000142(n-1) = (n-1)!.

A321520 Expansion of Product_{k>=1} (1 + (k - 1)!*x^k).

Original entry on oeis.org

1, 1, 1, 3, 8, 32, 152, 882, 5964, 46644, 411564, 4056912, 44097072, 524234448, 6761911968, 94055452128, 1403047948320, 22342552398720, 378256278306240, 6783950610708480, 128480976137122560, 2562250754919421440, 53668564630447910400
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 12 2018

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(i*(i+1)/2 b(n$2):
    seq(a(n), n=0..24);  # Alois P. Heinz, Jul 05 2023
  • Mathematica
    nmax = 22; CoefficientList[Series[Product[(1 + (k - 1)! x^k), {k, 1, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d + 1) d ((d - 1)!)^(k/d), {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 22}]

Formula

G.f.: exp(Sum_{k>=1} ( Sum_{d|k} (-1)^(k/d+1)*d*((d - 1)!)^(k/d) ) * x^k/k).
a(n) ~ (n-1)! * (1 + 1/n + 2/n^2 + 7/n^3 + 34/n^4 + 203/n^5 + 1454/n^6 + 12321/n^7 + 121326/n^8 + 1364947/n^9 + 17301550/n^10 + ...). - Vaclav Kotesovec, Nov 13 2018
Showing 1-3 of 3 results.