cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A144351 Lower triangular array called S1hat(1) related to partition number array A107106.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 6, 3, 1, 1, 24, 8, 3, 1, 1, 120, 34, 9, 3, 1, 1, 720, 156, 36, 9, 3, 1, 1, 5040, 924, 166, 37, 9, 3, 1, 1, 40320, 6144, 968, 168, 37, 9, 3, 1, 1, 362880, 48096, 6372, 978, 169, 37, 9, 3, 1, 1, 3628800, 420480, 49368, 6416, 980, 169, 37, 9, 3, 1, 1, 39916800, 4134240
Offset: 1

Views

Author

Wolfdieter Lang Oct 09 2008

Keywords

Comments

If in the partition array M31hat(1):=A107106 entries with the same parts number m are summed one obtains this triangle of numbers S1hat(1). In the same way the signless Stirling1 triangle |A008275| is obtained from the partition array M_2 = A036039.
The first three columns are A000142(n-1) (factorials), A024419 (guess), A144352.

Examples

			[1];[1,1];[2,1,1];[6,3,1,1];[24,8,3,1,1];...
		

Crossrefs

Row sums A107107.
A134134 (S1hat(2)= S2'(2)).

Formula

a(n,m)=sum(product(|S1(1;j,1)|^e(n,m,q,j),j=1..n),q=1..p(n,m)) if n>=m>=1, else 0. Here p(n,m)=A008284(n,m), the number of m parts partitions of n and e(n,m,q,j) is the exponent of j in the q-th m part partition of n. |S1(1,n,1)|= |A008275(n,1)| = A000142(n-1) = (n-1)!.

A107107 For each partition of n, calculate (dM2/dM3) where dM2 = A036039(p) and dM3 = A036040(p); then sum over all partitions of n.

Original entry on oeis.org

1, 1, 2, 4, 11, 37, 168, 926, 6181, 47651, 418546, 4106264, 44537519, 528408261, 6807428748, 94588717554, 1409927483625, 22437711255279, 379674820846534, 6806486383431340, 128862216628864163, 2569080120361323721, 53797824318887051264, 1180533584545138213222
Offset: 0

Views

Author

Alford Arnold, May 12 2005

Keywords

Comments

Values for individual partitions (A107106) are factorials when all but one part of the partition has size one or two, but not usually in other cases.

Examples

			For n = 6, (120,144,90,40,90,120,15,40,45,15,1) / (1,6,15,10,15,60,15,20,45,15,1)
  equals (120,24,6,4,6,2,1,2,1,1,1) so A107107(6) = 168.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember;
          `if`(n=0, 1, `if`(i<1, 0, b(n, i-1)+
          `if`(i>n, 0, b(n-i, i)*(i-1)!)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..30);  # Alois P. Heinz, May 11 2016
  • Mathematica
    nmax=20; CoefficientList[Series[Product[1/(1-(k-1)!*x^k),{k,1,nmax}],{x,0,nmax}],x] (* Vaclav Kotesovec, Mar 15 2015 *)
  • Maxima
    S(n,m):=if n=0 then 1 else if nVladimir Kruchinin, Sep 07 2014 */

Formula

For partition [], the contribution to the sum is product_i (c_i - 1)!^k_i.
G.f.: 1/Product_{m>0} (1-(m-1)!*x^m). - Vladeta Jovovic, Jul 10 2007
a(n) = S(n,1), where S(n,m) = sum(k=m..n/2, (k-1)!*S(n-k,k))+(n-1)!, S(n,n)=(n-1)!, S(0,m)=1, S(n,m)=0 for m>n. - Vladimir Kruchinin, Sep 07 2014
a(n) ~ (n-1)! * (1 + 1/n + 3/n^2 + 11/n^3 + 50/n^4 + 278/n^5 + 1861/n^6 + 14815/n^7 + 138477/n^8 + 1497775/n^9 + 18465330/n^10). - Vaclav Kotesovec, Mar 15 2015

Extensions

Edited, corrected and extended by Franklin T. Adams-Watters, Nov 03 2005
More terms from Vladeta Jovovic, Jul 10 2007

A144880 Partition number array, called M31hat(3).

Original entry on oeis.org

1, 3, 1, 12, 3, 1, 60, 12, 9, 3, 1, 360, 60, 36, 12, 9, 3, 1, 2520, 360, 180, 144, 60, 36, 27, 12, 9, 3, 1, 20160, 2520, 1080, 720, 360, 180, 144, 108, 60, 36, 27, 12, 9, 3, 1, 181440, 20160, 7560, 4320, 3600, 2520, 1080, 720, 540, 432, 360, 180, 144, 108, 81, 60, 36, 27
Offset: 1

Views

Author

Wolfdieter Lang Oct 09 2008

Keywords

Comments

Each partition of n, ordered as in Abramowitz-Stegun (A-St order; for the reference see A134278), is mapped to a nonnegative integer a(n,k) =: M31hat(3;n,k) with the k-th partition of n in A-St order.
The sequence of row lengths is A000041 (partition numbers) [1, 2, 3, 5, 7, 11, 15, 22, 30, 42,...].
This is the third (K=3) member of a family of partition number arrays: A107106, A134133,...

Examples

			[1];[3,1];[12,3,1];[60,12,9,3,1];[360,60,36,12,9,3,1];...
a(4,3)= 9 = |S1(3;2,1)|^2. The relevant partition of 4 is (2^2).
		

Crossrefs

A144882 (row sums).
A134133 (M31hat(2) array). A144885 (M31hat(4) array).

Formula

a(n,k)= product(|S1(3;j,1)|^e(n,k,j),j=1..n) with |S1(3;n,1)|= A046089(1,n) = [1,3,12,60,...], n>=1 and the exponent e(n,k,j) of j in the k-th partition of n in the A-St ordering of the partitions of n.
Showing 1-3 of 3 results.