A107124 Numbers k such that (10^(2*k+1)+27*10^k-1)/9 is prime.
2, 3, 32, 45, 1544
Offset: 1
Examples
32 is in the sequence because the palindromic number (10^(2*32+1)+27*10^32-1)/9 = 1(32).4.1(32) = 11111111111111111111111111111111411111111111111111111111111111111 is prime.
References
- C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.
Links
- Patrick De Geest, World!Of Numbers, Palindromic Wing Primes (PWP's)
- Makoto Kamada, Prime numbers of the form 11...11411...11
- Index entries for primes involving repunits.
Crossrefs
Programs
-
Mathematica
Do[If[PrimeQ[(10^(2n + 1) + 27*10^n - 1)/9], Print[n]], {n, 2200}] Select[Range[1600],PrimeQ[FromDigits[Join[PadRight[{},#,1],{4},PadRight[ {},#,1]]]]&] (* Harvey P. Dale, Aug 01 2017 *)
-
PARI
is(n)=ispseudoprime((10^(2*n+1)+27*10^n-1)/9) \\ Charles R Greathouse IV, May 22 2017
Formula
a(n) = (A077780(n)-1)/2.
Extensions
Edited by Ray Chandler, Dec 28 2010
Comments