A107131 A Motzkin related triangle.
1, 0, 1, 0, 1, 1, 0, 0, 3, 1, 0, 0, 2, 6, 1, 0, 0, 0, 10, 10, 1, 0, 0, 0, 5, 30, 15, 1, 0, 0, 0, 0, 35, 70, 21, 1, 0, 0, 0, 0, 14, 140, 140, 28, 1, 0, 0, 0, 0, 0, 126, 420, 252, 36, 1, 0, 0, 0, 0, 0, 42, 630, 1050, 420, 45, 1, 0, 0, 0, 0, 0, 0, 462, 2310, 2310, 660, 55, 1
Offset: 0
Examples
Triangle begins 1; 0, 1; 0, 1, 1; 0, 0, 3, 1; 0, 0, 2, 6, 1; 0, 0, 0, 10, 10, 1; 0, 0, 0, 5, 30, 15, 1; 0, 0, 0, 0, 35, 70, 21, 1; 0, 0, 0, 0, 14, 140, 140, 28, 1; 0, 0, 0, 0, 0, 126, 420, 252, 36, 1;
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..11475 (rows 0 <= n <= 150, flattened).
- Marilena Barnabei, Flavio Bonetti, Niccolò Castronuovo, and Matteo Silimbani, Consecutive patterns in restricted permutations and involutions, arXiv:1902.02213 [math.CO], 2019.
- Paul Barry, On the duals of the Fibonacci and Catalan-Fibonacci polynomials and Motzkin paths, arXiv:2101.10218 [math.CO], 2021.
- Paul Barry and A. Hennessy, A Note on Narayana Triangles and Related Polynomials, Riordan Arrays, and MIMO Capacity Calculations, J. Int. Seq. 14 (2011), Article 11.3.8.
Crossrefs
Programs
-
Magma
[Binomial(n, 2*(n-k))*Catalan(n-k): k in [0..n], n in [0..13]]; // G. C. Greubel, May 22 2022
-
Maple
egf := exp(t*x)*hypergeom([],[2],t*x^2); s := n -> n!*coeff(series(egf,x,n+2),x,n); seq(print(seq(coeff(s(n),t,j),j=0..n)),n=0..9); # Peter Luschny, Oct 29 2014
-
Mathematica
T[n_, k_] := Binomial[k+1, n-k+1] Binomial[n, k]/(k+1); Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* Jean-François Alcover, Jun 19 2018 *)
-
SageMath
flatten([[binomial(n, 2*(n-k))*catalan_number(n-k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 22 2022
Formula
Number triangle T(n, k) = binomial(k+1, n-k+1)*binomial(n, k)/(k+1).
T(n, k) = Sum_{j=0..n} (-1)^(n-j)C(n, j)*C(j+1, k)*C(j+1, k+1)/(j+1). - Paul Barry, May 15 2005
G.f.: G = G(t, z) satisfies G = 1 + t*z*G + t*z^2*G^2. - Emeric Deutsch, May 29 2005
Coefficient array for the polynomials x^n*Hypergeometric2F1((1-n)/2, -n/2; 2; 4/x). - Paul Barry, Oct 04 2008
From Paul Barry, Jan 12 2009: (Start)
G.f.: 1/(1-xy(1+x)/(1-x^2*y/(1-xy(1+x)/(1-x^2y/(1-xy(1+x).... (continued fraction).
T(n,k) = C(n, 2n-2k)*A000108(n-k). (End)
Comments