cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A107132 Primes of the form 2x^2 + 13y^2.

Original entry on oeis.org

2, 13, 31, 149, 167, 317, 359, 397, 463, 487, 509, 613, 661, 709, 839, 1061, 1087, 1103, 1151, 1181, 1367, 1471, 1783, 1789, 1861, 2039, 2111, 2221, 2269, 2437, 2503, 2621, 2647, 2917, 2927, 2957, 3023, 3079, 3167, 3229, 3373, 3541, 3853
Offset: 1

Views

Author

T. D. Noe, May 13 2005

Keywords

Comments

Discriminant = -104. Binary quadratic forms ax^2+cy^2 have discriminant d=-4ac. We consider sequences of primes produced by forms with -400<=d<=0, a<=c and gcd(a,c)=1. These restrictions yield 173 sequences of prime numbers, which are organized by discriminant below. See A106856 for primes of the form ax^2+bxy+cy^2 with discriminant > -100.

References

  • David A. Cox, Primes of the Form x^2 + n y^2, Wiley, 1989.
  • L. E. Dickson, History of the Theory of Numbers, Vol. 3, Chelsea, 1923.

Crossrefs

Cf. A033218 (d=-104), A014752 (d=-108), A107133, A107134 (d=-112), A033219 (d=-116), A107135-A107137, A033220 (d=-120), A033221 (d=-124), A105389 (d=-128), A107138, A033222 (d=-132), A107139, A033223 (d=-136), A107140, A033224 (d=-140), A107141, A107142 (d=-144), A033225 (d=-148), A107143, A033226 (d=-152), A033227 (d=-156), A107144, A107145 (d=-160), A033228 (d=-164), A107146-A107148, A033229 (d=-168).
Cf. A033230 (d=-172), A107149, A107150 (d=-176), A107151, A107152 (d=-180), A107153, A033231 (d=-184), A033232 (d=-188), A141373 (d=-192), A107155 (d=-196), A107156, A107157 (d=-200), A107158, A033233 (d=-204), A107159, A107160 (d=-208), A033234 (d=-212), A107161, A107162 (d=-216), A033235 (d=-220), A107163, A107164 (d=-224), A107165, A033236 (d=-228), A107166, A033237 (d=-232), A033238 (d=-236).
Cf. A107167-A107169 (d=-240), A033239 (d=-244), A107170, A033240 (d=-248), A014754 (d=-256), A107171, A033241 (d=-260), A107172-A107174, A033242 (d=-264), A033243 (d=-268), A107175, A107176 (d=-272), A107177, A033244 (d=-276), A107178-A107180, A033245 (d=-280), A033246 (d=-284), A107181 (d=-288), A033247 (d=-292), A107182, A033248 (d=-296), A107183, A107184 (d=-300), A107185, A107186 (d=-304), A107187, A033249 (d=-308).
Cf. A107188-A107190, A033250 (d=-312), A033251 (d=-316), A107191, A107192 (d=-320), A107193 (d=-324), A107194, A033252 (d=-328), A033253 (d=-332), A107195-A107198 (d=-336), A107199, A033254 (d=-340), A107200, A033255 (d=-344), A033256 (d=-348), A107132 A107201, A107202 (d=-352), A033257 (d=-356), A107203-A107206 (d=-360), A107207, A033258 (d=-364), A107208, A107209 (d=-368), A107210, A033202 (d=-372).
Cf. A107211, A033204 (d=-376), A033206 (d=-380), A107212, A107213 (d=-384), A033208 (d=-388), A107214, A107215 (d=-392), A107216, A107217 (d=-396), A107218, A107219 (d=-400).
For a more complete list of sequences giving numbers and/or primes represented by binary quadratic forms, see the "Binary Quadratic Forms and OEIS" link.

Programs

  • Mathematica
    QuadPrimes2[2, 0, 13, 10000] (* see A106856 *)
  • PARI
    list(lim)=my(v=List([2,13]),t); for(y=1,sqrtint(lim\13), for(x=1,sqrtint((lim-13*y^2)\2), if(isprime(t=2*x^2+13*y^2), listput(v,t)))); Set(v) \\ Charles R Greathouse IV, Feb 07 2017

A164623 Primes p such that p*(p-1)/2-5 and p*(p-1)/2+5 are also prime numbers.

Original entry on oeis.org

13, 157, 673, 1069, 1117, 1153, 1213, 1597, 2029, 2089, 2437, 2713, 2833, 3613, 4057, 4909, 5653, 6337, 6529, 7549, 7993, 8053, 9613, 10789, 11497, 11689, 12073, 12373, 13309, 13669, 13789, 14173, 15289, 15937, 16249, 18097, 18637, 19249, 19993
Offset: 1

Views

Author

Keywords

Comments

Primes A000040(k) such that A008837(k)+-5 are also prime numbers.

Examples

			13 is in the sequence because 13*6-5=73 and 13*6+5=83 are both prime.
		

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[2300]], PrimeQ[# (# - 1)/2 - 5] && PrimeQ[# (# - 1)/2 + 5] &]
  • PARI
    forprime(p=2,10^6,my(b=binomial(p,2));if(isprime(b-5)&isprime(b+5),print1(p,", "))); /* Joerg Arndt, Apr 10 2013 */

Extensions

Edited by R. J. Mathar, Aug 20 2009
Mathematica code adapted to the definition by Bruno Berselli, Apr 10 2013
Showing 1-2 of 2 results.