A107243 Sum of squares of pentanacci numbers (A001591).
0, 0, 0, 0, 1, 2, 6, 22, 86, 342, 1303, 5024, 19424, 75120, 290416, 1122160, 4337009, 16762634, 64787534, 250400910, 967783566, 3740437902, 14456621263, 55874162432, 215950971648, 834640190272, 3225844698176, 12467736540480
Offset: 0
Examples
a(0) = 0 = 0^2 since F_5(0) = A001591(0) = 0. a(1) = 0 = 0^2 + 0^2 a(2) = 0 = 0^2 + 0^2 + 0^2 a(3) = 0 = 0^2 + 0^2 + 0^2 + 0^2 a(4) = 1 = 0^2 + 0^2 + 0^2 + 0^2 + 1^2 a(5) = 2 = 0^2 + 0^2 + 0^2 + 0^2 + 1^2 + 1^2 a(6) = 6 = 0^2 + 0^2 + 0^2 + 0^2 + 1^2 + 1^2 + 2^2 a(7) = 22 = 0^2 + 0^2 + 0^2 + 0^2 + 1^2 + 1^2 + 2^2 + 4^2 a(8) = 86 = 8^2 + 22 a(9) = 342 = 16^2 + 86
Links
- W. C. Lynch, The t-Fibonacci numbers and polyphase sorting, Fib. Quart., 8 (1970), pp. 6ff.
- Eric Weisstein's World of Mathematics, Fibonacci n-Step Number.
- Index entries for linear recurrences with constant coefficients, signature (3, 2, 3, 7, 14, -32, -2, 6, -4, -6, 10, 1, -1, 0, 1, -1).
Programs
-
Mathematica
Accumulate[LinearRecurrence[{1,1,1,1,1},{0,0,0,0,1},30]^2] (* Harvey P. Dale, Jan 04 2015 *) LinearRecurrence[{3, 2, 3, 7, 14, -32, -2, 6, -4, -6, 10, 1, -1, 0, 1, -1},{0, 0, 0, 0, 1, 2, 6, 22, 86, 342, 1303, 5024, 19424, 75120, 290416, 1122160},28] (* Ray Chandler, Aug 02 2015 *)
Formula
a(n) = F_5(1)^2 + F_5(1)^2 + F_5(2)^2 + ... F_5(n)^2 where F_5(n) = A001591(n). a(0) = 0, a(n+1) = a(n) + A001591(n)^2.
a(n)= 3*a(n-1) +2*a(n-2) +3*a(n-3) +7*a(n-4) +14*a(n-5) -32*a(n-6) -2*a(n-7) +6*a(n-8) -4*a(n-9) -6*a(n-10) +10*a(n-11) +a(n-12) -a(n-13) +a(n-15) -a(n-16). [R. J. Mathar, Aug 11 2009]
G.f.: x^4*(x^10 +x^9 +x^7 +x^6 -6*x^5 -5*x^4 -3*x^3 -2*x^2 -x +1) / ((x -1)*(x^5 +x^4 +x^3 +3*x^2 +3*x -1)*(x^10 -x^9 -x^7 +x^6 -6*x^5 +3*x^4 +3*x^3 +2*x^2 +x +1)). - Colin Barker, May 08 2013
Extensions
a(26) and a(27) corrected by R. J. Mathar, Aug 11 2009