cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A107244 Sum of squares of hexanacci numbers (A001592, Fibonacci 6-step numbers).

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 2, 6, 22, 86, 342, 1366, 5335, 20960, 82464, 324528, 1277104, 5025200, 19770800, 77789489, 306071370, 1204272270, 4738336974, 18643463374, 73354544590, 288620849614, 1135607911375, 4468164041216, 17580442344960
Offset: 0

Views

Author

Jonathan Vos Post, May 19 2005

Keywords

Comments

Primes include: a(6) = 2. Semiprimes include a(7) = 6 = 2 * 3, a(8) = 22 = 2 * 11, a(9) = 86 = 2 * 43, a(11) = 1366 = 2 * 683, a(19) = 77789489 = 3989 * 19501, a(23) = 18643463374 = 2 * 9321731687,

Examples

			a(0) = 0 = 0^2
a(1) = 0 = 0^2 + 0^2
a(2) = 0 = 0^2 + 0^2 + 0^2
a(3) = 0 = 0^2 + 0^2 + 0^2 + 0^2
a(4) = 0 = 0^2 + 0^2 + 0^2 + 0^2 + 0^2
a(5) = 1 = 0^2 + 0^2 + 0^2 + 0^2 + 0^2 + 1^2
a(6) = 2 = 0^2 + 0^2 + 0^2 + 0^2 + 0^2 + 1^2 + 1^2
a(7) = 6 = 0^2 + 0^2 + 0^2 + 0^2 + 0^2 + 1^2 + 1^2 + 2^2
a(8) = 22 = 0^2 + 0^2 +0^2 + 0^2 + 0^2 + 1^2 + 1^2 + 2^2 + 4^2
		

Crossrefs

Programs

  • Mathematica
    Accumulate[LinearRecurrence[{1,1,1,1,1,1},{0,0,0,0,0,1},50]^2] (* Harvey P. Dale, Jan 19 2012 *)
    LinearRecurrence[{3, 2, 4, 6, 14, 28, -67, -9, -8, 28, -8, -12, 20, 5, 5, -10, 0, 2, -2, 0, -1, 1},{0, 0, 0, 0, 0, 1, 2, 6, 22, 86, 342, 1366, 5335, 20960, 82464, 324528, 1277104, 5025200, 19770800, 77789489, 306071370, 1204272270},29] (* Ray Chandler, Aug 02 2015 *)

Formula

a(n) = F_6(0)^2 + F_6(1)^2 + ... F_6(n)^2, where F_6(n) = A001592(n). a(0) = 0, a(n+1) = a(n) + A001592(n).
a(n)= 3*a(n-1) +2*a(n-2) +4*a(n-3) +6*a(n-4) +14*a(n-5) +28*a(n-6) -67*a(n-7) -9*a(n-8) -8*a(n-9) +28*a(n-10) -8*a(n-11) -12*a(n-12) +20*a(n-13) +5*a(n-14) +5*a(n-15) -10*a(n-16) +2*a(n-18) -2*a(n-19) -a(n-21) +a(n-22). [From R. J. Mathar, Aug 11 2009]