A107267 A square array of Motzkin related transforms, read by antidiagonals.
1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 4, 6, 3, 1, 0, 9, 20, 12, 4, 1, 0, 21, 72, 54, 20, 5, 1, 0, 51, 272, 261, 112, 30, 6, 1, 0, 127, 1064, 1323, 672, 200, 42, 7, 1, 0, 323, 4272, 6939, 4224, 1425, 324, 56, 8, 1, 0, 835, 17504, 37341, 27456, 10625, 2664, 490, 72, 9, 1
Offset: 0
Examples
Array begins 1, 0, 0, 0, 0, 0, 0, ... 1, 1, 2, 4, 9, 21, 51, ... 1, 2, 6, 20, 72, 272, 1064, ... 1, 3, 12, 54, 261, 1323, 6939, ... 1, 4, 20, 112, 672, 4224, 27456, ... 1, 5, 30, 200, 1425, 10625, 81875, ... 1, 6, 42, 324, 2664, 22896, 203256, ...
Links
- Seiichi Manyama, Antidiagonals n = 0..139, flattened
Crossrefs
Formula
Number array T(n,k) = Sum_{j=0..k} n^j * binomial(k,j) * binomial(j+1,k-j+1)/(j+1).
G.f. of row k: 1/(1 - k*x - k*x^2/(1 - k*x - k*x^2/(1 - k*x - k*x^2/(1 - k*x - k*x^2/(1 - ...))))), a continued fraction. - Ilya Gutkovskiy, Sep 21 2017
From Seiichi Manyama, May 05 2019: (Start)
T(n,k) = Sum_{j=0..floor(k/2)} n^(k-j) * binomial(k,2*j) * binomial(2*j,j)/(j+1) = Sum_{j=0..floor(k/2)} n^(k-j) * binomial(k,2*j) * A000108(j).
(k+2) * T(n,k) = n * (2*k+1) * T(n,k-1) - n * (n-4) * (k-1) * T(n,k-2). (End)
Comments