A107346 Differences between successive permutations of 1,2,3,4,5 regarded as decimal numbers arranged in increasing order.
9, 81, 18, 81, 9, 702, 9, 171, 27, 72, 18, 693, 18, 72, 27, 171, 9, 702, 9, 81, 18, 81, 9, 5913, 9, 81, 18, 81, 9, 1602, 9, 261, 36, 63, 27, 594, 18, 162, 36, 162, 18, 603, 9, 171, 27, 72, 18, 5814, 9, 171, 27, 72, 18, 603, 9, 261, 36, 63, 27, 1584, 27, 63, 36, 261, 9
Offset: 1
Examples
Permutations are 12345, 12354, 12435, ... a(3) = 18 because if we order these permutations (ascending), then P(4)-P(3) = 12453-12435 = 18
Links
- T. D. Noe, Table of n, a(n) for n = 1..119 (complete sequence)
Programs
-
Mathematica
Differences[FromDigits /@ Permutations[{1, 2, 3, 4, 5}]] (* T. D. Noe, Dec 18 2012 *)
-
PARI
A107346(n)=A209280(n) \\ - M. F. Hasler, Jan 15 2013
Formula
a(n) = A209280(n) for n<5!. See there for more useful relations. - M. F. Hasler, Jan 15 2013
Comments