cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A107373 a(n) = (n/2)*binomial(n-1, floor((n-1)/2)) - 2^(n-2).

Original entry on oeis.org

0, 0, 1, 2, 7, 14, 38, 76, 187, 374, 874, 1748, 3958, 7916, 17548, 35096, 76627, 153254, 330818, 661636, 1415650, 2831300, 6015316, 12030632, 25413342, 50826684, 106853668, 213707336, 447472972, 894945944, 1867450648, 3734901296, 7770342787, 15540685574
Offset: 1

Views

Author

N. J. A. Sloane, Jul 20 2007

Keywords

Comments

Total number of descents in all faro permutations of length n-1. Faro permutations are permutations avoiding the three consecutive patterns 231, 321 and 312. They are obtained by a perfect faro shuffle of two nondecreasing words of lengths differing by at most one. See also A340567, A340568 and A340569. - Sergey Kirgizov, Jan 11 2021

Crossrefs

Programs

Formula

a(2*n) = 2*A000531(n-1); a(2*n+1) = A000531(n). - Max Alekseyev, Sep 30 2013
(1-n)*a(n) + 2*(n-1)*a(n-1) + 4*(n-2)*a(n-2) + 8*(-n+2)*a(n-3) = 0. - R. J. Mathar, May 26 2013