A107379 Number of ways to write n^2 as the sum of n odd numbers, disregarding order.
1, 1, 1, 3, 9, 30, 110, 436, 1801, 7657, 33401, 148847, 674585, 3100410, 14422567, 67792847, 321546251, 1537241148, 7400926549, 35854579015, 174677578889, 855312650751, 4207291811538, 20782253017825, 103048079556241, 512753419159803, 2559639388956793
Offset: 0
Examples
For example, 9 can be written as a sum of three odd numbers in 3 ways: 1+1+7, 1+3+5 and 3+3+3.
Links
- Alois P. Heinz and Vaclav Kotesovec, Table of n, a(n) for n = 0..500 (first 200 terms from Alois P. Heinz)
Programs
-
Maple
f := proc (n, k) option remember; if n = 0 and k = 0 then return 1 end if; if n <= 0 or n < k then return 0 end if; if `mod`(n+k, 2) = 1 then return 0 end if; if k = 1 then return 1 end if; return procname(n-1, k-1) + procname(n-2*k, k) end proc; seq(f(k^2,k), k=0..20);
-
Mathematica
Table[SeriesCoefficient[Product[1/(1-x^k),{k,1,n}],{x,0,n*(n-1)/2}],{n,0,20}] (* Vaclav Kotesovec, May 25 2015 *)
-
PARI
{a(n)=polcoeff(prod(k=1,n,1/(1-x^k+x*O(x^(n*(n-1)/2)))),n*(n-1)/2)} /* Paul D. Hanna, Feb 05 2012 */
Formula
a(n) = [x^(n*(n-1)/2)] Product_{k=1..n} 1/(1 - x^k). - Paul D. Hanna, Feb 05 2012
a(n) ~ c * d^n / n^2, where d = 5.400871904118154152466091119104270052029... = A258234, c = 0.155212227152682180502977404265024265... . - Vaclav Kotesovec, Sep 07 2014
Extensions
Arguments in the Maple program swapped and 4 terms added by R. J. Mathar, Oct 02 2009
Comments