cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A107396 a(n) = binomial(n+5, 5) * binomial(n+7, 5).

Original entry on oeis.org

21, 336, 2646, 14112, 58212, 199584, 594594, 1585584, 3864861, 8744736, 18582564, 37425024, 71954064, 132838272, 236618172, 408282336, 684723501, 1119300336, 1787771370, 2795913120, 4289184900, 6464858400, 9587091150, 14005489680, 20177780805, 28697288256
Offset: 0

Views

Author

Zerinvary Lajos, May 25 2005

Keywords

Examples

			If n=0 then C(0+5,5)*C(0+7,5) = C(5,5)*C(7,5) = 1*21 = 21.
If n=9 then C(6+5,5)*C(6+7,5) = C(11,5)*C(13,5) = 462*1287 = 594594.
		

Crossrefs

Programs

  • Magma
    A107396:= func< n | Binomial(n+5,5)*Binomial(n+7,5) >;
    [A107396(n): n in [0..30]]; // G. C. Greubel, Feb 09 2025
    
  • Mathematica
    a[n_] := Binomial[n + 5, 5] * Binomial[n + 7, 5]; Array[a, 25, 0] (* Amiram Eldar, Sep 01 2022 *)
  • PARI
    a(n)={binomial(n+5, 5) * binomial(n+7, 5)} \\ Andrew Howroyd, Nov 08 2019
    
  • SageMath
    def A107396(n): return binomial(n+5,5)*binomial(n+7,5)
    print([A107396(n) for n in range(31)]) # G. C. Greubel, Feb 09 2025

Formula

From Amiram Eldar, Sep 01 2022: (Start)
Sum_{n>=0} 1/a(n) = 350*Pi^2/3 - 82901/72.
Sum_{n>=0} (-1)^n/a(n) = 1975/24 - 25*Pi^2/3. (End)
G.f.: 21*(1 + 5*x + 5*x^2 + x^3)/(1-x)^11. - G. C. Greubel, Feb 09 2025

Extensions

a(7) corrected and terms a(15) and beyond from Andrew Howroyd, Nov 08 2019