cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A107417 a(n) = binomial(n+2,2)*binomial(n+5,5).

Original entry on oeis.org

1, 18, 126, 560, 1890, 5292, 12936, 28512, 57915, 110110, 198198, 340704, 563108, 899640, 1395360, 2108544, 3113397, 4503114, 6393310, 8925840, 12273030, 16642340, 22281480, 29484000, 38595375, 50019606, 64226358, 81758656, 103241160, 129389040, 161017472, 199051776
Offset: 0

Views

Author

Zerinvary Lajos, May 26 2005

Keywords

Examples

			If n=0 then C(0+2,2)*C(0+5,5) = C(2,2)*C(5,5) = 1*1 = 1.
If n=3 then C(3+2,2)*C(3+5,5) = C(5,2)*C(8,5) = 10*56 = 560.
		

Crossrefs

Cf. A062145.

Programs

  • Magma
    A107417:= func< n | Binomial(n+2,n)*Binomial(n+5,n) >;
    [A107417(n): n in [0..40]]; // G. C. Greubel, Mar 10 2025
    
  • Mathematica
    Table[Binomial[n+2,2]Binomial[n+5,5],{n,0,40}] (* or *) LinearRecurrence[ {8,-28,56,-70,56,-28,8,-1},{1,18,126,560,1890,5292,12936,28512},40] (* Harvey P. Dale, Feb 18 2012 *)
  • PARI
    for(n=0,40,print1(binomial(n+2,2)*binomial(n+5,5),","))
    
  • SageMath
    def A107417(n): return binomial(n+2,n)*binomial(n+5,n)
    print([A107417(n) for n in range(41)]) # G. C. Greubel, Mar 10 2025

Formula

From Harvey P. Dale, Feb 18 2012: (Start)
a(0)=1, a(1)=18, a(2)=126, a(3)=560, a(4)=1890, a(5)=5292, a(6)=12936, a(7)=28512, a(n)=8*a(n-1)-28*a(n-2)+56*a(n-3)-70*a(n-4)+56*a(n-5)- 28*a(n-6)+ 8*a(n-7)-a(n-8).
G.f.: (1 + 10*x + 10*x^2)/(1-x)^8. (End)
From Amiram Eldar, Sep 08 2022: (Start)
Sum_{n>=0} 1/a(n) = 25*Pi^2/3 - 5845/72.
Sum_{n>=0} (-1)^n/a(n) = 205/8 - 5*Pi^2/2. (End)
E.g.f.: (1/240)*(240 + 4080*x + 10920*x^2 + 9400*x^3 + 3350*x^4 + 542*x^5 + 39*x^6 + x^7)*exp(x). - G. C. Greubel, Mar 10 2025

Extensions

More terms from Rick L. Shepherd, May 27 2005