cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A107419 a(n) = binomial(n+4,4)*binomial(n+7,7).

Original entry on oeis.org

1, 40, 540, 4200, 23100, 99792, 360360, 1132560, 3185325, 8179600, 19467448, 43439760, 91706160, 184497600, 355816800, 661028544, 1187785665, 2071432440, 3516320500, 5824819000, 9436206780, 14978106000, 23333661000, 35728290000, 53840548125, 79942445856
Offset: 0

Views

Author

Zerinvary Lajos, May 26 2005

Keywords

Examples

			a(0) = C(0+4,4)*C(0+7,7) = C(4,4)*C(7,7) = 1*1 = 1.
a(6) = C(6+4,4)*C(6+7,7) = C(10,4)*C(13,7) = 210*1716 = 360360.
		

Crossrefs

Cf. A062145.

Programs

  • Magma
    A107419:= func< n | Binomial(n+4,n)*Binomial(n+7,n) >;
    [A107419(n): n in [0..40]]; // G. C. Greubel, Mar 10 2025
    
  • Mathematica
    Table[Binomial[n+4,4]Binomial[n+7,7],{n,0,30}] (* Harvey P. Dale, Jul 27 2019 *)
  • PARI
    for(n=0,29,print1(binomial(n+4,4)*binomial(n+7,7),","))
    
  • SageMath
    def A107419(n): return binomial(n+4,n)*binomial(n+7,n)
    print([A107419(n) for n in range(41)]) # G. C. Greubel, Mar 10 2025

Formula

From Chai Wah Wu, Apr 10 2021: (Start)
a(n) = 12*a(n-1) - 66*a(n-2) + 220*a(n-3) - 495*a(n-4) + 792*a(n-5) - 924*a(n-6) + 792*a(n-7) - 495*a(n-8) + 220*a(n-9) - 66*a(n-10) + 12*a(n-11) - a(n-12) for n > 11.
G.f.: (1 + 28*x + 126*x^2 + 140*x^3 + 35*x^4)/(1 - x)^12. (End)
From Amiram Eldar, Sep 06 2022: (Start)
Sum_{n>=0} 1/a(n) = 392*Pi^2 - 870268/225.
Sum_{n>=0} (-1)^n/a(n) = 56*Pi^2/3 - 3584*log(2)/15 - 441/25. (End)

Extensions

Corrected and extended by Rick L. Shepherd, May 27 2005