Original entry on oeis.org
31, 33, 59, 62, 71, 73, 83, 86, 94, 102, 109, 116, 126, 127, 129, 130, 142, 143, 146, 147, 158, 160, 164, 166, 176, 178, 179, 182, 183, 185, 193, 199, 201, 207, 218, 223, 236, 239, 245, 248, 257, 259, 261, 262, 263, 266, 267, 268, 270, 272, 281, 283, 285, 286
Offset: 1
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 60, 61, 63, 64, 65, 66, 67, 68, 69, 70, 72
Offset: 1
A049816
Triangular array T read by rows: T(n,k) = number of nonzero remainders when Euclidean algorithm acts on n and k, for k=1..n, n>=1.
Original entry on oeis.org
0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 2, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 2, 2, 1, 0, 0, 0, 2, 0, 3, 1, 1, 0, 0, 1, 0, 1, 2, 1, 2, 1, 0, 0, 0, 1, 1, 0, 2, 2, 1, 1, 0, 0, 1, 2, 2, 1, 2, 3, 3, 2, 1, 0, 0, 0, 0, 0, 2, 0, 3, 1, 1, 1, 1, 0, 0, 1, 1, 1, 3, 1, 2, 4, 2, 2, 2, 1, 0
Offset: 1
Triangle begins:
0,
0, 0,
0, 1, 0,
0, 0, 1, 0,
0, 1, 2, 1, 0,
0, 0, 0, 1, 1, 0,
0, 1, 1, 2, 2, 1, 0,
0, 0, 2, 0, 3, 1, 1, 0,
0, 1, 0, 1, 2, 1, 2, 1, 0,
0, 0, 1, 1, 0, 2, 2, 1, 1, 0,
0, 1, 2, 2, 1, 2, 3, 3, 2, 1, 0,
0, 0, 0, 0, 2, 0, 3, 1, 1, 1, 1, 0,
0, 1, 1, 1, 3, 1, 2, 4, 2, 2, 2, 1, 0,
...
-
T:= proc(x, y) option remember;
`if`(y=0, -1, 1+T(y, irem(x, y)))
end:
seq(seq(T(n, k), k=1..n), n=1..15); # Alois P. Heinz, Nov 29 2023
-
R[n_, k_] := R[n, k] = With[{r = Mod[n, k]}, If[r == 0, 1, R[k, r] + 1]];
T[n_, k_] := R[n, k] - 1;
Table[T[n, k], {n, 1, 13}, {k, 1, n}] // Flatten (* Jean-François Alcover, Apr 12 2019, after Robert Israel in A107435 *)
A268057
Triangle T(n,k), 1<=k<=n, read by rows: T(n,k) = number of iterations of A048158(n, A048158(n, ... A048158(n, k)...)) to reach 0.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 3, 2, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 3, 3, 2, 1, 1, 1, 2, 1, 3, 2, 2, 1, 1, 2, 1, 2, 3, 2, 3, 2, 1, 1, 1, 2, 2, 1, 3, 3, 2, 2, 1, 1, 2, 3, 4, 2, 3, 5, 4, 3, 2, 1, 1, 1, 1, 1, 2, 1, 3, 2, 2, 2, 2, 1, 1, 2, 2, 2, 3, 2, 3, 4, 3
Offset: 1
T(5, 3) = 3 because the algorithm requires three steps to reach 0.
5 % 3 = 2
5 % 2 = 1
5 % 1 = 0
Triangle begins:
1
1 1
1 2 1
1 1 2 1
1 2 3 2 1
1 1 1 2 2 1
1 2 2 3 3 2 1
1 1 2 1 3 2 2 1
1 2 1 2 3 2 3 2 1
1 1 2 2 1 3 3 2 2 1
1 2 3 4 2 3 5 4 3 2 1
1 1 1 1 2 1 3 2 2 2 2 1
-
T:= proc(n,k) option remember; local m;
if k = 0 then 0 else 1 + procname(n,n mod k) fi
end proc:
seq(seq(T(n,k),k=1..n),n=1..30); # Robert Israel, Feb 02 2016
-
T[n_, k_] := T[n, k] = If[k == 0, 0, 1 + T[n, Mod[n, k]]];
Table[Table[T[n, k], {k, 1, n}], {n, 1, 30}] // Flatten (* Jean-François Alcover, Jan 31 2023, after Robert Israel *)
A367690
Total number of steps of Euclid's GCD algorithm to calculate gcd(x,y) for all pairs x,y in the range 1 <= x,y <= n.
Original entry on oeis.org
1, 5, 14, 26, 47, 67, 100, 136, 177, 221, 286, 338, 415, 491, 568, 652, 761, 861, 990, 1098, 1219, 1351, 1520, 1652, 1813, 1985, 2162, 2334, 2555, 2727, 2960, 3172, 3397, 3641, 3878, 4098, 4383, 4659, 4944, 5204, 5537, 5805, 6158, 6466, 6775, 7123, 7524, 7848
Offset: 1
-
g:= proc(x, y) option remember;
`if`(y=0, 0, 1+g(y, irem(x, y)))
end:
a:= proc(n) option remember; `if`(n=0, 0,
a(n-1)+n+2*add(g(n, j), j=1..n-1))
end:
seq(a(n), n=1..100); # Alois P. Heinz, Nov 27 2023
-
g[x_, y_] := g[x, y] = If[y == 0, 0, 1 + g[y, Mod[x, y]]];
a[n_] := a[n] = If[n == 0, 0, a[n-1] + n + 2*Sum[g[n, j], {j, 1, n-1}]];
Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Apr 19 2025, after Alois P. Heinz *)
-
A107435(n, k) = if (k == 0, 0, 1 + A107435(k, n % k));
a(n) = sum(x=1, n, sum(y=1, n, A107435(x,y)));
print(vector(49,n,a(n)));
-
from functools import cache
A107435 = lambda x,y: 0 if y == 0 else 1 + A107435(y, x % y)
A049826 = lambda n: sum(A107435(n,j) for j in range(1, n))
@cache
def a(n):
# Code after Alois P. Heinz
if n == 0: return 0
return a(n-1) + n + A049826(n) * 2
print([a(n) for n in range(1,49)])
A367892
Total number of steps of Euclid's GCD algorithm to calculate gcd(x,y) for all pairs x,y in the range 1 <= y <= x <= n.
Original entry on oeis.org
1, 3, 7, 12, 21, 29, 43, 58, 75, 93, 121, 142, 175, 207, 239, 274, 321, 363, 419, 464, 515, 571, 645, 700, 769, 843, 919, 992, 1089, 1161, 1263, 1354, 1451, 1557, 1659, 1752, 1877, 1997, 2121, 2232, 2379, 2493, 2649, 2782, 2915, 3067, 3245, 3384, 3549
Offset: 1
-
g:= proc(x, y) option remember;
`if`(y=0, 0, 1+g(y, irem(x, y)))
end:
a:= proc(n) option remember; `if`(n=0, 0,
a(n-1)+add(g(n, j), j=1..n))
end:
seq(a(n), n=1..100); # Alois P. Heinz, Dec 04 2023
-
g[x_, y_] := g[x, y] = If[y == 0, 0, 1 + g[y, Mod[x, y]]];
a[n_] := a[n] = If[n == 0, 0, a[n - 1] + Sum[g[n, j], { j, 1, n}]];
Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Mar 08 2024, after Alois P. Heinz *)
-
A107435 = lambda x, y: 0 if y == 0 else 1 + A107435(y, x % y)
a = lambda n: n+sum(A107435(x,y) for x in range(1, n+1) for y in range(1, x))
print([a(n) for n in range(1, 50)])
A367954
Total number of steps of Euclid's GCD algorithm to calculate gcd(x,y) for all pairs x,y in the range 1 <= x < y <= n.
Original entry on oeis.org
0, 2, 7, 14, 26, 38, 57, 78, 102, 128, 165, 196, 240, 284, 329, 378, 440, 498, 571, 634, 704, 780, 875, 952, 1044, 1142, 1243, 1342, 1466, 1566, 1697, 1818, 1946, 2084, 2219, 2346, 2506, 2662, 2823, 2972, 3158, 3312, 3509, 3684, 3860, 4056, 4279, 4464, 4676
Offset: 1
-
g:= proc(x, y) option remember;
`if`(y=0, 0, 1+g(y, irem(x, y)))
end:
a:= proc(n) option remember; `if`(n=0, 0,
a(n-1)+add(g(j, n), j=1..n-1))
end:
seq(a(n), n=1..100); # Alois P. Heinz, Dec 05 2023
-
g[x_, y_] := g[x, y] = If[y == 0, 0, 1 + g[y, Mod[x, y]]];
a[n_] := a[n] = If[n == 0, 0, a[n - 1] + Sum[g[j, n], { j, 1, n - 1}]];
Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Mar 08 2024, after Alois P. Heinz *)
-
A107435 = lambda x, y: 0 if y == 0 else 1 + A107435(y, x % y)
a = lambda n: sum(A107435(y,x)+1 for x in range(1, n+1) for y in range(x+1, n+1))
print([a(n) for n in range(1, 50)])
Showing 1-7 of 7 results.
Comments