cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A107448 Irregular triangle T(n, k) = b(n) + k^2 + k + 1, where b(n) = A056486(n-1) - (1/2)*[n=1], for n >= 1 and 1 <= k <= b(n) - 1, read by rows.

Original entry on oeis.org

5, 7, 11, 17, 13, 17, 23, 31, 41, 53, 67, 83, 101, 19, 23, 29, 37, 47, 59, 73, 89, 107, 127, 149, 173, 199, 227, 257, 43, 47, 53, 61, 71, 83, 97, 113, 131, 151, 173, 197, 223, 251, 281, 313, 347, 383, 421, 461, 503, 547, 593, 641, 691, 743, 797, 853, 911, 971, 1033
Offset: 1

Views

Author

Roger L. Bagula, May 26 2005

Keywords

Comments

Former title: Triangular form sequence made from a version of A082605 Euler extension.

Examples

			The irregular triangle begins as:
   5;
   7, 11, 17;
  13, 17, 23, 31, 41, 53, 67, 83, 101;
  19, 23, 29, 37, 47, 59, 73, 89, 107, 127, 149, 173, 199, 227, 257;
		

References

  • Advanced Number Theory, Harvey Cohn, Dover Books, 1963, Page 155

Crossrefs

Programs

  • Magma
    b:= func< n | n eq 1 select 2 else 2^(n-3)*(9-(-1)^n) >;
    A107448:= func< n,k | b(n) +k^2 +k +1 >;
    [A107448(n,k): k in [1..b(n)-1], n in [1..8]]; // G. C. Greubel, Mar 23 2024
    
  • Mathematica
    (* First program *)
    a[1] = 3; a[2] = 5; a[3] = 11; a[n_]:= a[n]= Abs[1-4*a[n-2]] -2;
    euler= Table[a[n], {n,10}];
    Table[k^2 + k + euler[[n]], {n,7}, {k,euler[[i]] -2}]//Flatten
    (* Second program *)
    b[n_]:= 2^(n-3)*(9-(-1)^n) - Boole[n==1]/2;
    T[n_, k_]:= b[n] +k^2+k+1;
    Table[T[n,k], {n,8}, {k,b[n]-1}]//Flatten (* G. C. Greubel, Mar 23 2024 *)
  • SageMath
    def b(n): return 2^(n-3)*(9-(-1)^n) - int(n==1)/2
    def A107448(n,k): return b(n) + k^2+k+1;
    flatten([[A107448(n,k) for k in range(1,b(n))] for n in range(1,8)]) # G. C. Greubel, Mar 23 2024

Formula

T(n, k) = b(n) + k^2 + k + 1, where b(n) = A056486(n-1) - (1/2)*[n=1], for n >= 1 and 1 <= k <= b(n) - 1. - G. C. Greubel, Mar 23 2024

Extensions

Edited by G. C. Greubel, Mar 23 2024