A107461 Number of gap-free compositions of n into distinct parts, cf. A107428.
1, 1, 3, 1, 3, 7, 3, 1, 9, 25, 3, 7, 3, 25, 129, 1, 3, 31, 3, 121, 729, 25, 3, 7, 123, 25, 729, 5041, 3, 151, 3, 1, 729, 25, 5163, 40327, 3, 25, 729, 121, 3, 5071, 3, 40321, 363729, 25, 3, 7, 5043, 145, 729, 40321, 3, 362911, 3628923, 5041, 729, 25, 3, 40447, 3, 25
Offset: 1
Examples
a(6) = 7 because we have 6, 123, 132, 213, 231, 312 and 321.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
Programs
-
Maple
G:=sum(k!*x^(k*(k+1)/2)/(1-x^k),k=1..20): Gser:=series(G,x=0,73): seq(coeff(Gser,x^n),n=1..70); # Emeric Deutsch
-
Mathematica
nn=62;Drop[CoefficientList[Series[Sum[k!x^(k (k+1)/2)/(1-x^k),{k,1,nn}],{x,0,nn}],x],1] (* Geoffrey Critzer, Apr 13 2014 *)
-
PARI
N=66; q='q+O('q^N); S=1+2*sqrtint(N); gf=sum(n=1,S, n! * q^(n*(n+1)/2) / (1-q^n) ); Vec(gf) /* Joerg Arndt, Oct 20 2012 */
Formula
G.f.: Sum_{k>0} k!*x^(k*(k+1)/2)/(1-x^k).
Extensions
More terms from Emeric Deutsch, Jun 19 2005