A107480 a(n) = a(n-1) + a(n-3) + a(n-4) + a(n-5) + a(n-7).
0, 1, 1, 2, 3, 5, 8, 14, 25, 42, 71, 121, 207, 353, 601, 1025, 1748, 2980, 5080, 8661, 14767, 25176, 42922, 73178, 124762, 212707, 362644, 618273, 1054096, 1797131, 3063933, 5223708, 8905915, 15183719, 25886764, 44134416, 75244889, 128285220, 218713827
Offset: 0
Links
- Harvey P. Dale, Table of n, a(n) for n = 0..1000
- Peter Borwein and Kevin G. Hare, Some computations on Pisot and Salem numbers, 2000, table 1, p. 7.
- Peter Borwein and Kevin G. Hare, Some computations on the spectra of Pisot and Salem numbers, Math. Comp. 71 (2002), 767-780.
- Index entries for linear recurrences with constant coefficients, signature (1,0,1,1,1,0,1).
Crossrefs
Programs
-
Magma
m:=40; R
:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(x*(1 +x^2-x^5)/((1+x^2)*(1-x-x^2-x^5)))); // G. C. Greubel, Nov 03 2018 -
Mathematica
LinearRecurrence[{1,0,1,1,1,0,1}, {0,1,1,2,3,5,8}, 50] (* Harvey P. Dale, May 21 2012 *)
-
PARI
concat([0], Vec(x*(1 + x^2 - x^5) / ((1 + x^2)*(1 - x - x^2 - x^5)) + O(x^40))) \\ Colin Barker, Dec 17 2017
Formula
G.f.: x*(1 + x^2 - x^5) / ((1 + x^2)*(1 - x - x^2 - x^5)). - Colin Barker, Dec 17 2017
Extensions
Entry rewritten by Charles R Greathouse IV, Jan 26 2011
Comments