A107587 Number of Motzkin n-paths with an even number of up steps.
1, 1, 1, 1, 3, 11, 31, 71, 155, 379, 1051, 2971, 8053, 21165, 56057, 152881, 425491, 1186227, 3287971, 9102787, 25346457, 71111377, 200425149, 565676629, 1597672277, 4520632981, 12827046181, 36493762501, 104027787451, 296947847203, 848765305351, 2429671858671
Offset: 0
Examples
G.f. = 1 + x + x^2 + x^3 + 3*x^4 + 11*x^5 + 31*x^6 + 71*x^7 + 155*x^8 + ...
Links
- Gennady Eremin, Table of n, a(n) for n = 0..800
- Gennady Eremin, Walking in the OEIS: From Motzkin numbers to Fibonacci numbers. The "shadows" of Motzkin numbers, arXiv:2108.10676 [math.CO], 2021.
Programs
-
Mathematica
CoefficientList[Series[(Sqrt[1 - 2*x + 5*x^2] - Sqrt[1 - 2*x - 3*x^2])/(4*x^2), {x, 0, 30}], x] (* or *) Table[HypergeometricPFQ[{1/4 - n/4, 1/2 - n/4, 3/4 - n/4, -n/4}, {1/2, 1, 3/2}, 16], {n, 0, 30}] (* Vaclav Kotesovec, Feb 07 2021 *)
-
PARI
my(x='x+O('x^35)); Vec((sqrt(1-2*x+5*x^2)-sqrt(1-2*x-3*x^2))/(4*x^2)) \\ Michel Marcus, Jan 20 2021
-
Python
A107587 = [1, 1, 1, 1, 3] for n in range(5, 801): A107587.append(((5*n**2+n-3)*A107587[-1]-(10*n**2-16*n+3)*A107587[-2] +(10*n**2-34*n+27)*A107587[-3]+(11*n-5)*(n-3)*A107587[-4] -15*(n-3)*(n-4)*A107587[-5])//(n*n+2*n)) # Gennady Eremin, Mar 25 2021
Formula
G.f.: A(x) = (sqrt(1 - 2*x + 5*x^2) - sqrt(1 - 2*x - 3*x^2))/(4*x^2).
G.f.: A(x) satisfies A(x) = 1 + x*A(x) + 2*x^2*A(x)*(M(x) - A(x)) where M(x) is the g.f. for Motzkin numbers A001006 (personal conversation with Gennady Eremin). - Sergey Kirgizov, Mar 23 2021
a(n) = Sum_{k=0..floor(n/2)} binomial(n, 2*k) * A000108(k) * ((k+1) mod 2).
a(n) = Sum_{k=0..n} binomial(n, 4*k) * A000108(2*k). - Gennady Eremin, Jan 19 2021
Conjecture: n*(n+2)*a(n) + (-5*n^2-n+3)*a(n-1) + (10*n^2-16*n+3)*a(n-2) + (-10*n^2+34*n-27)*a(n-3) - (11*n-5)*(n-3)*a(n-4) + 15*(n-3)*(n-4)*a(n-5) = 0. - R. J. Mathar, Feb 20 2015 [conjecture is true for n = 0..800; checked by Gennady Eremin, Jan 25 2021]
Conjecture: n*(n-2)*(n+2)*a(n) - (2*n-1)*(2*n^2-2*n-3)*a(n-1) + 3*(n-1)*(2*n^2-4*n+1)*a(n-2) - 2*(n-1)*(n-2)*(2*n-3)*a(n-3) - 15*(n-1)*(n-2)*(n-3)*a(n-4) = 0. - R. J. Mathar, Feb 20 2015 [conjecture is true for n = 0..800; checked by Gennady Eremin, Jan 25 2021]
a(n) = hypergeom([1/4 - n/4, 1/2 - n/4, 3/4 - n/4, -n/4], [1/2, 1, 3/2], 16). - Vaclav Kotesovec, Feb 07 2021
G.f.: A(x) satisfies 2*x^2*A(x)^2 + sqrt(1-2*x-3*x^2)*A(x) = 1 (discussion with Sergey Kirgizov). - Gennady Eremin, Mar 30 2021
Sum_{n>=0} 1/a(n) = 4.481162666556140691601309195776026399507565017... - Gennady Eremin, Jul 27 2021
Extensions
New name (after email conversations with Gennady Eremin) from Sergey Kirgizov, Mar 25 2021
Comments