cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A107587 Number of Motzkin n-paths with an even number of up steps.

Original entry on oeis.org

1, 1, 1, 1, 3, 11, 31, 71, 155, 379, 1051, 2971, 8053, 21165, 56057, 152881, 425491, 1186227, 3287971, 9102787, 25346457, 71111377, 200425149, 565676629, 1597672277, 4520632981, 12827046181, 36493762501, 104027787451, 296947847203, 848765305351, 2429671858671
Offset: 0

Views

Author

Paul Barry, May 16 2005

Keywords

Comments

Binomial transform of 1,0,0,0,2,0,0,0,14,0,0,0,132,... (see A048990). [Corrected by John Keith, May 10 2021]
Number of Motzkin n-paths with only steps F=(1,0) or with an even number of steps U=(1,1) and, accordingly, D=(1,-1) (see A001006). For example, there are 9 Motzkin 4-paths, namely: FFFF, FFUD, FUFD, FUDF, UFFD, UFDF, UUDD, UDFF, and UDUD. We have one path with only F's and two paths with two U's and two D's: UUDD, UDUD. So a(4) = 1 + 2 = 3. - Gennady Eremin, Jan 19 2021

Examples

			G.f. = 1 + x + x^2 + x^3 + 3*x^4 + 11*x^5 + 31*x^6 + 71*x^7 + 155*x^8 + ...
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(Sqrt[1 - 2*x + 5*x^2] - Sqrt[1 - 2*x - 3*x^2])/(4*x^2), {x, 0, 30}], x] (* or *)
    Table[HypergeometricPFQ[{1/4 - n/4, 1/2 - n/4, 3/4 - n/4, -n/4}, {1/2, 1, 3/2}, 16], {n, 0, 30}] (* Vaclav Kotesovec, Feb 07 2021 *)
  • PARI
    my(x='x+O('x^35)); Vec((sqrt(1-2*x+5*x^2)-sqrt(1-2*x-3*x^2))/(4*x^2)) \\ Michel Marcus, Jan 20 2021
    
  • Python
    A107587 = [1, 1, 1, 1, 3]
    for n in range(5, 801):
        A107587.append(((5*n**2+n-3)*A107587[-1]-(10*n**2-16*n+3)*A107587[-2]
          +(10*n**2-34*n+27)*A107587[-3]+(11*n-5)*(n-3)*A107587[-4]
          -15*(n-3)*(n-4)*A107587[-5])//(n*n+2*n)) # Gennady Eremin, Mar 25 2021

Formula

G.f.: A(x) = (sqrt(1 - 2*x + 5*x^2) - sqrt(1 - 2*x - 3*x^2))/(4*x^2).
G.f.: A(x) satisfies A(x) = 1 + x*A(x) + 2*x^2*A(x)*(M(x) - A(x)) where M(x) is the g.f. for Motzkin numbers A001006 (personal conversation with Gennady Eremin). - Sergey Kirgizov, Mar 23 2021
a(n) = Sum_{k=0..floor(n/2)} binomial(n, 2*k) * A000108(k) * ((k+1) mod 2).
a(n) = Sum_{k=0..n} binomial(n, 4*k) * A000108(2*k). - Gennady Eremin, Jan 19 2021
Conjecture: n*(n+2)*a(n) + (-5*n^2-n+3)*a(n-1) + (10*n^2-16*n+3)*a(n-2) + (-10*n^2+34*n-27)*a(n-3) - (11*n-5)*(n-3)*a(n-4) + 15*(n-3)*(n-4)*a(n-5) = 0. - R. J. Mathar, Feb 20 2015 [conjecture is true for n = 0..800; checked by Gennady Eremin, Jan 25 2021]
Conjecture: n*(n-2)*(n+2)*a(n) - (2*n-1)*(2*n^2-2*n-3)*a(n-1) + 3*(n-1)*(2*n^2-4*n+1)*a(n-2) - 2*(n-1)*(n-2)*(2*n-3)*a(n-3) - 15*(n-1)*(n-2)*(n-3)*a(n-4) = 0. - R. J. Mathar, Feb 20 2015 [conjecture is true for n = 0..800; checked by Gennady Eremin, Jan 25 2021]
a(n) = hypergeom([1/4 - n/4, 1/2 - n/4, 3/4 - n/4, -n/4], [1/2, 1, 3/2], 16). - Vaclav Kotesovec, Feb 07 2021
G.f.: A(x) satisfies 2*x^2*A(x)^2 + sqrt(1-2*x-3*x^2)*A(x) = 1 (discussion with Sergey Kirgizov). - Gennady Eremin, Mar 30 2021
Sum_{n>=0} 1/a(n) = 4.481162666556140691601309195776026399507565017... - Gennady Eremin, Jul 27 2021

Extensions

New name (after email conversations with Gennady Eremin) from Sergey Kirgizov, Mar 25 2021