cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A107620 Primes multiplied alternately by 3 and 2.

Original entry on oeis.org

6, 6, 15, 14, 33, 26, 51, 38, 69, 58, 93, 74, 123, 86, 141, 106, 177, 122, 201, 142, 219, 158, 249, 178, 291, 202, 309, 214, 327, 226, 381, 262, 411, 278, 447, 302, 471, 326, 501, 346, 537, 362, 573, 386, 591, 398, 633, 446, 681, 458
Offset: 1

Views

Author

Zak Seidov, May 18 2005

Keywords

Comments

Cf. A107621 = primes multiplied alternately by 2 and 3.

Crossrefs

Cf. A107621.

Programs

  • Mathematica
    A107620[n_]:= Prime[n] (2 + Mod[n, 2]); Array[A107620, 40]

Formula

A107620(n) = prime(n)*(2 + mod(n, 2)).

A131368 Coprime semiprimes: a(n-1) and a(n) are the closest coprime semiprimes.

Original entry on oeis.org

4, 9, 10, 21, 22, 25, 26, 33, 34, 35, 38, 39, 46, 49, 51, 55, 57, 58, 65, 69, 74, 77, 82, 85, 86, 87, 91, 93, 94, 95, 106, 111, 115, 118, 119, 121, 122, 123, 133, 134, 141, 142, 143, 145, 146, 155, 158, 159, 161, 166, 169, 177, 178, 183, 185, 187, 194, 201, 202, 203
Offset: 1

Views

Author

Zak Seidov, Sep 30 2007

Keywords

Comments

The slowest increasing sequence of semiprimes with coprime neighbor terms.

Crossrefs

Subsequence of A001358 (semiprimes).

Programs

  • Maple
    A[1]:= 4: t:= 4: count:= 1:
    for x from 5 while count < 100 do
      if igcd(x, t) = 1 then
        if numtheory:-bigomega(x)=2 then
          count:= count+1;
          A[count]:= x;
          t:= x;
        fi
      fi
    od:
    seq(A[i], i=1..100); # Robert Israel, Jun 11 2023
  • PARI
    lista(nn) = {my(vsp = select((x->(bigomega(x) == 2)), vector(nn, k, k)), i = 1, last); while (i <= #vsp, print1(vsp[i], ", "); last = vsp[i]; while(gcd(vsp[i], last) != 1, i++; if (i>#vsp, break)););} \\ Michel Marcus, Jun 25 2019

Formula

gcd(a(n-1), a(n)) = 1.

A107622 Primes plus alternately 2 and 3.

Original entry on oeis.org

4, 6, 7, 10, 13, 16, 19, 22, 25, 32, 33, 40, 43, 46, 49, 56, 61, 64, 69, 74, 75, 82, 85, 92, 99, 104, 105, 110, 111, 116, 129, 134, 139, 142, 151, 154, 159, 166, 169, 176, 181, 184, 193, 196, 199, 202, 213, 226, 229, 232, 235, 242, 243, 254, 259, 266, 271, 274, 279
Offset: 1

Views

Author

Zak Seidov, May 18 2005

Keywords

Crossrefs

Cf. A107620, A107621, 107623.

Programs

  • Mathematica
    A107622[n_]:= Prime[n] + (3 - Mod[n, 2]) (* From Zak Seidov *)
    Total[#]&/@Partition[Riffle[Prime[Range[100]],{2,3}],2] (* Harvey P. Dale, Dec 14 2010 *)

Formula

A107622(n) = prime(n) + (3 - mod(n, 2)).

A107623 Primes plus alternately 3 and 2.

Original entry on oeis.org

5, 5, 8, 9, 14, 15, 20, 21, 26, 31, 34, 39, 44, 45, 50, 55, 62, 63, 70, 73, 76, 81, 86, 91, 100, 103, 106, 109, 112, 115, 130, 133, 140, 141, 152, 153, 160, 165, 170, 175, 182, 183, 194, 195, 200, 201, 214, 225, 230, 231, 236, 241, 244, 253, 260, 265, 272, 273
Offset: 1

Views

Author

Zak Seidov, May 18 2005

Keywords

Crossrefs

Cf. A107620, A107621, 107622.

Programs

  • Mathematica
    A107623[n_]:= Prime[n] + (2 + Mod[n, 2])

Formula

A107623(n) = prime(n) + (2 + mod(n, 2)).
Showing 1-4 of 4 results.