cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A107635 McKay-Thompson series of class 32a for the Monster group.

Original entry on oeis.org

1, 3, 3, 4, 9, 12, 15, 21, 30, 43, 54, 69, 94, 123, 153, 193, 252, 318, 391, 486, 609, 754, 918, 1119, 1376, 1680, 2019, 2432, 2946, 3540, 4220, 5034, 6015, 7157, 8463, 9999, 11835, 13956, 16374, 19206, 22542, 26376, 30750, 35829, 41745, 48526, 56250
Offset: 0

Views

Author

Michael Somos, May 18 2005

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 3*x + 3*x^2 + 4*x^3 + 9*x^4 + 12*x^5 + 15*x^6 + 21*x^7 + ...
T32a = 1/q + 3*q^7 + 3*q^15 + 4*q^23 + 9*q^31 + 12*q^39 + 15*q^47 + ...
		

Crossrefs

Cf. A022598.

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ (QPochhammer[ x^2]^2 / (QPochhammer[ x] QPochhammer[ x^4]))^3, {x, 0, n}]; (* Michael Somos, Jun 29 2014 *)
    nmax = 50; CoefficientList[Series[Product[(1 + x^(2*k+1))^3, {k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 27 2015 *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A)^2 / (eta(x + A) * eta(x^4 + A)))^3, n))};

Formula

Expansion of q^(1/8) * (eta(q^2)^2 / (eta(q) * eta(q^4)))^3 in powers of q.
Expansion of chi(x)^3 = phi(x) / psi(-x) in powers of x where phi(), psi(), chi() are Ramanujan theta functions.
Given g.f. A(x), then B(q) = A(q^8) / q satisfies 0 = f(B(q), B(q^3)) where f(u, v) = (u^3 - v) * (v^3 - u) - 9*u*v.
Euler transform of period 4 sequence [3, -3, 3, 0, ...].
G.f.: Product_{k>0} (1 + (-x)^k)^-3.
a(n) = (-1)^n * A022598(n).
a(n) ~ exp(Pi*sqrt(n/2)) / (2^(7/4) * n^(3/4)). - Vaclav Kotesovec, Aug 27 2015
G.f.: exp(3*Sum_{k>=1} x^k/(k*(1 - (-x)^k))). - Ilya Gutkovskiy, Jun 07 2018