cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A107650 Numbers n such that both numbers n/(d_1*d_2* ...*d_k) and n/(d_1+d_2+ ... +d_k) are prime, where d_1 d_2 ... d_k is the decimal expansion of n.

Original entry on oeis.org

11133, 11331, 13131, 31113, 112116, 121116, 13111212, 111311115, 11114112112, 111212112112, 1111111711311, 1111171111113, 11111111112611112, 11111111121161112, 11111112111161112, 11111119111131111, 11111131111119111, 11111139111111111, 11111193111111111, 11111211161111112, 11111611111211112, 11116111112111112, 11116111211111112
Offset: 1

Views

Author

Farideh Firoozbakht, May 21 2005

Keywords

Comments

For n in this sequence, let prime p = n/(d_1*d_2* ...*d_k) so that n = d_1*d_2* ...*d_k * p. Then n/(d_1+d_2+ ... +d_k) equals either p or some prime dividing d_1*d_2* ...*d_k, that is 2, 3, 5, or 7. The latter case never takes place and thus n/(d_1*d_2* ...*d_k) = n/(d_1+d_2+ ... +d_k) is the same prime. So this sequence is a subsequence of both A034710 and A066307. - Max Alekseyev, Aug 19 2013

Examples

			111311115 is in the sequence because
111311115/(1*1*1*3*1*1*1*1*5) and 111311115/(1+1+1+3+1+1+1+1+5)
are prime(since 1*1*1*3*1*1*1*1*5=1+1+1+3+1+1+1+1+5, the primes are equal).
		

Programs

  • Mathematica
    Do[h = IntegerDigits[m]; l = Length[h]; If[Min[h] > 0 && PrimeQ[m/Sum[h[[k]], {k, l}]] && PrimeQ[m/Product[ h[[k]], {k, l}]], Print[m]], {m, 265000000}]

Extensions

a(9)-a(10) from Sean A. Irvine, Nov 28 2010
Terms a(11) onward from Max Alekseyev, Aug 20 2013