A107650 Numbers n such that both numbers n/(d_1*d_2* ...*d_k) and n/(d_1+d_2+ ... +d_k) are prime, where d_1 d_2 ... d_k is the decimal expansion of n.
11133, 11331, 13131, 31113, 112116, 121116, 13111212, 111311115, 11114112112, 111212112112, 1111111711311, 1111171111113, 11111111112611112, 11111111121161112, 11111112111161112, 11111119111131111, 11111131111119111, 11111139111111111, 11111193111111111, 11111211161111112, 11111611111211112, 11116111112111112, 11116111211111112
Offset: 1
Examples
111311115 is in the sequence because 111311115/(1*1*1*3*1*1*1*1*5) and 111311115/(1+1+1+3+1+1+1+1+5) are prime(since 1*1*1*3*1*1*1*1*5=1+1+1+3+1+1+1+1+5, the primes are equal).
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000 (terms 1..1717 from Max Alekseyev).
Programs
-
Mathematica
Do[h = IntegerDigits[m]; l = Length[h]; If[Min[h] > 0 && PrimeQ[m/Sum[h[[k]], {k, l}]] && PrimeQ[m/Product[ h[[k]], {k, l}]], Print[m]], {m, 265000000}]
Extensions
a(9)-a(10) from Sean A. Irvine, Nov 28 2010
Terms a(11) onward from Max Alekseyev, Aug 20 2013
Comments