cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A107667 Triangular matrix T, read by rows, that satisfies: T = D + SHIFT_LEFT(T^2) where SHIFT_LEFT shifts each row 1 place to the left and D is the diagonal matrix {1, 2, 3, ...}.

Original entry on oeis.org

1, 4, 2, 45, 9, 3, 816, 112, 16, 4, 20225, 2200, 225, 25, 5, 632700, 58176, 4860, 396, 36, 6, 23836540, 1920163, 138817, 9408, 637, 49, 7, 1048592640, 75683648, 4886464, 290816, 16576, 960, 64, 8, 52696514169, 3460349970, 203451912, 10948203, 553473
Offset: 0

Views

Author

Paul D. Hanna, Jun 07 2005

Keywords

Examples

			Reverse of rows form the initial terms of g.f.s below.
Row n=0: 1 = 1*(1-x) + 1*x*(1-x) + ...
Row n=1: 2 = 2*(1-2*x) + 4*x*(1-2*x)*(1-x) + 12*x^2*(1-2*x)*(1-x) + ...
Row n=2: 3 = 3*(1-3*x) + 9*x*(1-3*x)*(1-2*x)
           + 45*x^2*(1-3*x)*(1-2*x)*(1-x)
           + 216*x^3*(1-3*x)*(1-2*x)*(1-x) + ...
Row n=3: 4 = 4*(1-4*x) + 16*x*(1-4*x)*(1-3*x)
           + 112*x^2*(1-4*x)*(1-3*x)*(1-2*x)
           + 816*x^3*(1-4*x)*(1-3*x)*(1-2*x)*(1-x)
           + 5248*x^4*(1-4*x)*(1-3*x)*(1-2*x)*(1-x) + ...
Triangle T begins:
           1;
           4,        2;
          45,        9,       3;
         816,      112,      16,      4;
       20225,     2200,     225,     25,     5;
      632700,    58176,    4860,    396,    36,   6;
    23836540,  1920163,  138817,   9408,   637,  49,  7;
  1048592640, 75683648, 4886464, 290816, 16576, 960, 64, 8;
  ...
The matrix square T^2 shifts each row right 1 place, dropping the diagonal D and putting A006689 in column 0:
          1;
         12,        4;
        216,       45,       9;
       5248,      816,     112,     16;
     160675,    20225,    2200,    225,   25;
    5931540,   632700,   58176,   4860,  396,  36;
  256182290, 23836540, 1920163, 138817, 9408, 637, 49;
  ...
		

Crossrefs

Cf. A006689, A107668 (column 0), A107669, A107670 (matrix square).

Programs

  • Haskell
    a = [[sum [a!!n!!i * a!!i!!(k+1) | i<-[k+1..n]] | k <- [0..n-1]] ++ [fromIntegral n+1] | n <- [0..]]
  • PARI
    {T(n,k)=local(P=matrix(n+1,n+1,r,c,if(r>=c,(r^2)^(r-c)/(r-c)!)), D=matrix(n+1,n+1,r,c,if(r==c,r)));if(n>=k,(P^-1*D*P)[n+1,k+1])}
    

Formula

Matrix diagonalization method: define the triangular matrix P by P(n, k) = ((n+1)^2)^(n-k)/(n-k)! for n >=k >= 0 and the diagonal matrix D by D(n, n) = n+1 for n >= 0; then T is given by T = P^-1*D*P.
Rows read in reverse form the initial terms of the g.f.: (n+1) = Sum_{k>=0} T(n, n-k) * x^k * Product_{j=0..k} (1-(n+1-j)*x) = T(n, n)*(1-(n+1)*x) + T(n, n-1)*x*(1-(n+1)*x)*(1-n*x) + T(n, n-2)*x^2*(1-(n+1)*x)*(1-n*x)*(1-(n-1)*x) + ... [Corrected by Petros Hadjicostas, Mar 11 2021]