A107667 Triangular matrix T, read by rows, that satisfies: T = D + SHIFT_LEFT(T^2) where SHIFT_LEFT shifts each row 1 place to the left and D is the diagonal matrix {1, 2, 3, ...}.
1, 4, 2, 45, 9, 3, 816, 112, 16, 4, 20225, 2200, 225, 25, 5, 632700, 58176, 4860, 396, 36, 6, 23836540, 1920163, 138817, 9408, 637, 49, 7, 1048592640, 75683648, 4886464, 290816, 16576, 960, 64, 8, 52696514169, 3460349970, 203451912, 10948203, 553473
Offset: 0
Examples
Reverse of rows form the initial terms of g.f.s below. Row n=0: 1 = 1*(1-x) + 1*x*(1-x) + ... Row n=1: 2 = 2*(1-2*x) + 4*x*(1-2*x)*(1-x) + 12*x^2*(1-2*x)*(1-x) + ... Row n=2: 3 = 3*(1-3*x) + 9*x*(1-3*x)*(1-2*x) + 45*x^2*(1-3*x)*(1-2*x)*(1-x) + 216*x^3*(1-3*x)*(1-2*x)*(1-x) + ... Row n=3: 4 = 4*(1-4*x) + 16*x*(1-4*x)*(1-3*x) + 112*x^2*(1-4*x)*(1-3*x)*(1-2*x) + 816*x^3*(1-4*x)*(1-3*x)*(1-2*x)*(1-x) + 5248*x^4*(1-4*x)*(1-3*x)*(1-2*x)*(1-x) + ... Triangle T begins: 1; 4, 2; 45, 9, 3; 816, 112, 16, 4; 20225, 2200, 225, 25, 5; 632700, 58176, 4860, 396, 36, 6; 23836540, 1920163, 138817, 9408, 637, 49, 7; 1048592640, 75683648, 4886464, 290816, 16576, 960, 64, 8; ... The matrix square T^2 shifts each row right 1 place, dropping the diagonal D and putting A006689 in column 0: 1; 12, 4; 216, 45, 9; 5248, 816, 112, 16; 160675, 20225, 2200, 225, 25; 5931540, 632700, 58176, 4860, 396, 36; 256182290, 23836540, 1920163, 138817, 9408, 637, 49; ...
Programs
-
Haskell
a = [[sum [a!!n!!i * a!!i!!(k+1) | i<-[k+1..n]] | k <- [0..n-1]] ++ [fromIntegral n+1] | n <- [0..]]
-
PARI
{T(n,k)=local(P=matrix(n+1,n+1,r,c,if(r>=c,(r^2)^(r-c)/(r-c)!)), D=matrix(n+1,n+1,r,c,if(r==c,r)));if(n>=k,(P^-1*D*P)[n+1,k+1])}
Formula
Matrix diagonalization method: define the triangular matrix P by P(n, k) = ((n+1)^2)^(n-k)/(n-k)! for n >=k >= 0 and the diagonal matrix D by D(n, n) = n+1 for n >= 0; then T is given by T = P^-1*D*P.
Rows read in reverse form the initial terms of the g.f.: (n+1) = Sum_{k>=0} T(n, n-k) * x^k * Product_{j=0..k} (1-(n+1-j)*x) = T(n, n)*(1-(n+1)*x) + T(n, n-1)*x*(1-(n+1)*x)*(1-n*x) + T(n, n-2)*x^2*(1-(n+1)*x)*(1-n*x)*(1-(n-1)*x) + ... [Corrected by Petros Hadjicostas, Mar 11 2021]