Original entry on oeis.org
1, 4, 45, 816, 20225, 632700, 23836540, 1048592640, 52696514169, 2976295383100, 186548057815801, 12845016620629488, 963644465255618276, 78224633235142116240, 6830914919397129328500, 638477522900795994967040, 63599377775480137499907561, 6725771848938288950491594140
Offset: 0
O.g.f.: A(x) = 1 + 4*x + 45*x^2 + 816*x^3 + 20225*x^4 + 632700*x^5 + 23836540*x^6 + 1048592640*x^7 + 52696514169*x^8 + 2976295383100*x^9 + ...
From _Petros Hadjicostas_, Mar 10 2021: (Start)
We illustrate the above formula for a(n) with the compositions of n + 1 for n = 2.
The compositions of n + 1 = 3 are 3, 1 + 2, 2 + 1, and 1 + 1 + 1. Thus the above sum has four terms with (r = 1, s_1 = 3), (r = 2, s_1 = 1, s_2 = 2), (r = 2, s_1 = 2, s_2 = 1), and (r = 3, s_1 = s_2 = s_3 = 1).
The value of the denominator Product_{j=1..r} s_j! for these four terms is 6, 2, 2, and 1, respectively.
The value of the numerator Product_{j=1..r} (Sum_{i=1..j} s_i)^(2*s_j) for these four terms is 729, 81, 144, and 36.
Thus a(2) = 729/6 - 81/2 - 144/2 + 36/1 = 45. (End)
-
-- using program for A107667
a107668 = map head a where a = [[sum [a!!n!!i * a!!i!!(k+1) | i<-[k+1..n]] | k <- [0..n-1]] ++ [fromIntegral n+1] | n <- [0..]] -- John Tromp, Oct 21 2024
-
-- low memory version
a107668 n = (foldl' (\r i->sum r`seq`listArray(0,n)(0:[if i+1<2*j then 0 else r!j*(n+2-j)+r!(j-1)|j<-[1..n]])) (listArray(0,n)(0:repeat 1)) [1..2*n])!n -- John Tromp, Oct 15 2024
-
{a(n)=local(A);if(n==0,n+1,A=(n+1)*x+x*O(x^n); for(k=0,n,A+=polcoeff(A,k)*x^k*(n+1-prod(i=0,k,1+(i-n-1)*x))); polcoeff(A,n))}
for(n=0,30, print1(a(n),", "))
-
/* From formula: [x^n] exp( n^2*x ) * (1 - x*A(x)) = 0 */
{a(n) = my(A=[1]); for(i=0, n, A=concat(A, 0); m=#A; A[m] = Vec( exp(x*m^2 +x^2*O(x^m)) * (1 - x*Ser(A)) )[m+1] ); A[n+1]}
for(n=0,25, print1( a(n),", ")) \\ Paul D. Hanna, May 12 2018
-
/* From Recurrence: */
{a(n) = if(n==0,1, (n+1)^(2*n+2)/(n+1)! - sum(k=1,n, (n+1)^(2*k)/k! * a(n-k) ))}
for(n=0,25, print1( a(n),", ")) \\ Paul D. Hanna, May 12 2018
Original entry on oeis.org
1, 12, 4, 216, 45, 9, 5248, 816, 112, 16, 160675, 20225, 2200, 225, 25, 5931540, 632700, 58176, 4860, 396, 36, 256182290, 23836540, 1920163, 138817, 9408, 637, 49, 12665445248, 1048592640, 75683648, 4886464, 290816, 16576, 960, 64
Offset: 0
Triangle T(n,k) (with rows n >= 0 and columns k = 0..n) begins:
1;
12, 4;
216, 45, 9;
5248, 816, 112, 16;
160675, 20225, 2200, 225, 25;
5931540, 632700, 58176, 4860, 396, 36;
256182290, 23836540, 1920163, 138817, 9408, 637, 49;
...
-
{T(n,k)=local(P=matrix(n+1,n+1,r,c,if(r>=c,(r^2)^(r-c)/(r-c)!)), D=matrix(n+1,n+1,r,c,if(r==c,r)));if(n>=k,(P^-1*D^2*P)[n+1,k+1])}
A006689
Number of deterministic, completely-defined, initially-connected finite automata with 2 inputs and n unlabeled states.
Original entry on oeis.org
1, 12, 216, 5248, 160675, 5931540, 256182290, 12665445248, 705068085303, 43631250229700, 2970581345516818, 220642839342906336, 17753181687544516980, 1538156947936524172656, 142767837727544113783650, 14132742269814671677890048, 1486239549269418316509918111, 165468157149718534883789004804
Offset: 1
a(2) = 12 since the following transition diagrams represent all twelve initially connected automata with two input letters x and y and two states 1 (initial) and 2: 1==x,y==>2==>, 1--x-->2==>, 1--y-->2==>, 1--y-->1 1--x-->1 where the transitions from state 2 are specified arbitrary (4 different possibilities in every case).
- R. Bacher and C. Reutenauer, The number of right ideals of given codimension over a finite field, in Noncommutative Birational Geometry, Representations and Combinatorics, edited by Arkady. Berenstein and Vladimir. Retakha, Contemporary Mathematics, Vol. 592, 2013.
- V. A. Liskovets, The number of initially connected automata, Kibernetika, (Kiev), No3 (1969), 16-19; Engl. transl.: Cybernetics, v.4 (1969), 259-262.
- R. Reis, N. Moreira and M. Almeida, On the Representation of Finite Automata, in Proocedings of 7th Int. Workshop on Descriptional Complexity of Formal Systems (DCFS05) Jun 30, 2005, Como, Italy, page 269-276
- Robert W. Robinson, Counting strongly connected finite automata, pages 671-685 in "Graph theory with applications to algorithms and computer science." Proceedings of the fifth international conference held at Western Michigan University, Kalamazoo, Mich., June 4-8, 1984. Edited by Y. Alavi, G. Chartrand, L. Lesniak [L. M. Lesniak-Foster], D. R. Lick and C. E. Wall. A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1985. xv+810 pp. ISBN: 0-471-81635-3; Math Review MR0812651 (86g:05026).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- M. Almeida, N. Moreira and R. Reis. On the Representation of Finite Automata, Technical Report DCC-2005-04, DCC - FC & LIACC, Universidade do Porto, April, 2005.
- M. Almeida, N. Moreira, and R. Reis, Enumeration and generation with a string automata representation, Theor. Comp. Sci. 387 (2007) 93-102, B(k=2,n)
- E. Lebensztayn, A large deviations principle for the Maki-Thompson rumour model, arXiv preprint arXiv:1411.5614 [math.PR], 2014-2015.
- V. A. Liskovets, The number of initially connected automata, Kibernetika, (Kiev), No3 (1969), 16-19; Engl. transl.: Cybernetics, v.4 (1969), 259-262.
- V. A. Liskovets, Exact enumeration of acyclic automata, Proc. 15th Conf. "Formal Power Series and Algebr. Combin. (FPSAC'03)", 2003.
- V. A. Liskovets, Exact enumeration of acyclic deterministic automata, Discrete Appl. Math., 154, No.3 (2006), 537-551.
- R. W. Robinson, Counting strongly connected finite automata, pages 671-685 in "Graph theory with applications to algorithms and computer science." Proceedings of the fifth international conference held at Western Michigan University, Kalamazoo, Mich., June 4-8, 1984. Edited by Y. Alavi, G. Chartrand, L. Lesniak [L. M. Lesniak-Foster], D. R. Lick and C. E. Wall. A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1985. xv+810 pp. ISBN: 0-471-81635-3; Math Review MR0812651. (86g:05026). [Annotated scanned copy, with permission of the author.]
- G. Sedlitz, Abzahlung von Automaten, formalen Sprachen und verwandten Strukturen, Master's Thesis, Vienna (2017), Theorem 6.1
-
b := proc(k,n)
option remember;
if n = 1 then
1;
else
n^(k*n) -add(binomial(n-1,j-1)*n^(k*(n-j))*procname(k,j),j=1..n-1) ;
end if;
end proc:
B := proc(k,n)
b(k,n)/(n-1)! ;
end proc:
A006689 := proc(n)
B(2,n) ;
end proc:
seq(A006689(n),n=1..10) ; # R. J. Mathar, May 21 2018
-
a[1] = 1; a[n_] := a[n] = n^(2*n)/(n-1)! - Sum[n^(2*(n-i))*a[i]/(n-i)!, {i, 1, n-1}]; Table[ a[n], {n, 1, 15}] (* Jean-François Alcover, Dec 15 2014 *)
-
a(n)=if(n<1,0,n^(2*n)/(n-1)!-sum(i=1,n-1,n^(2*(n-i))/(n-i)!*a(i)))
-
a(n)=local(A);if(n<1,0,A=n*x+x*O(x^n); for(k=0,n,A+=polcoeff(A,k)*x^k*(n-prod(i=0,k,1-(n-i)*x)));polcoeff(A,n))
A107671
Triangular matrix T, read by rows, that satisfies: T = D + SHIFT_LEFT(T^3), where SHIFT_LEFT shifts each row 1 place to the left and D is the diagonal matrix {1, 2, 3, ...}.
Original entry on oeis.org
1, 8, 2, 513, 27, 3, 81856, 2368, 64, 4, 23846125, 469625, 7625, 125, 5, 10943504136, 160767720, 1898856, 19656, 216, 6, 7250862593527, 83548607478, 776598305, 6081733, 43561, 343, 7, 6545029128786432, 61068815111168, 465690017280, 2966844928, 16494080, 86528, 512, 8
Offset: 0
Triangle T begins:
1;
8, 2;
513, 27, 3;
81856, 2368, 64, 4;
23846125, 469625, 7625, 125, 5;
10943504136, 160767720, 1898856, 19656, 216, 6;
7250862593527, 83548607478, 776598305, 6081733, 43561, 343, 7;
...
The matrix cube T^3 shifts each row to the right 1 place, dropping the diagonal D and putting A006690 in column 0:
1;
56, 8;
7965, 513, 27;
2128064, 81856, 2368, 64;
914929500, 23846125, 469625, 7625, 125;
576689214816, 10943504136, 160767720, 1898856, 19656, 216;
...
From _Petros Hadjicostas_, Mar 11 2021: (Start)
We illustrate the above formula for T(n,k=0) with the compositions of n + 1 for n = 2. The compositions of n + 1 = 3 are 3, 1 + 2, 2 + 1, and 1 + 1 + 1. Thus the above sum has four terms with (r = 1, s_1 = 3), (r = 2, s_1 = 1, s_2 = 2), (r = 2, s_1 = 2, s_2 = 1), and (r = 3, s_1 = s_2 = s_3 = 1).
The value of the denominator Product_{j=1..r} s_j! for these four terms is 6, 2, 2, and 1, respectively.
The value of the numerator s_1^(-1)*Product_{j=1..r} (Sum_{i=1..j} s_i)^(3*s_j) for these four terms is 19683/3, 729/1, 1728/2, and 216/1.
Thus T(2,0) = (19683/3)/6 - (729/1)/2 - (1728/2)/2 + (216/1)/1 = 513. (End)
-
{T(n,k)=local(P=matrix(n+1,n+1,r,c,if(r>=c,(r^3)^(r-c)/(r-c)!)), D=matrix(n+1,n+1,r,c,if(r==c,r)));if(n>=k,(P^-1*D*P)[n+1,k+1])}
Original entry on oeis.org
1, 56, 8, 7965, 513, 27, 2128064, 81856, 2368, 64, 914929500, 23846125, 469625, 7625, 125, 576689214816, 10943504136, 160767720, 1898856, 19656, 216, 500750172337212, 7250862593527, 83548607478, 776598305, 6081733, 43561, 343
Offset: 0
Triangle begins:
1;
56,8;
7965,513,27;
2128064,81856,2368,64;
914929500,23846125,469625,7625,125;
576689214816,10943504136,160767720,1898856,19656,216; ...
which equals the matrix cube of triangle A107671:
1;
8,2;
513,27,3;
81856,2368,64,4;
23846125,469625,7625,125,5;
10943504136,160767720,1898856,19656,216,6; ...
-
{T(n,k)=local(P=matrix(n+1,n+1,r,c,if(r>=c,(r^3)^(r-c)/(r-c)!)), D=matrix(n+1,n+1,r,c,if(r==c,r)));if(n>=k,(P^-1*D^3*P)[n+1,k+1])}
Original entry on oeis.org
1, 1, 5, 51, 809, 17575, 486460, 16384260, 650574249, 29762953831, 1541719486081, 89201504309927, 5702038255950404, 399105271607867940, 30359621863987241460, 2494052823831234355340, 220067051126228849480649
Offset: 0
-
{a(n)=local(A);if(n==0,n+1,A=(n+1)*x+x*O(x^n); for(k=0,n,A+=polcoeff(A,k)*x^k*(n+1-prod(i=0,k,1+(i-n-1)*x))); polcoeff(A,n)/(n+1)^2)}
Original entry on oeis.org
1, 24, 4, 2268, 135, 9, 461056, 15936, 448, 16, 160977375, 3789250, 69000, 1125, 25, 85624508376, 1485395280, 19994688, 223560, 2376, 36, 64363893844726, 862907827866, 9138674195, 79086196, 596820, 4459, 49, 64928246784463872
Offset: 0
Triangle T(n,k) (with rows n >= 0 and columns k = 0..n) begins:
1;
24, 4;
2268, 135, 9;
461056, 15936, 448, 16;
160977375, 3789250, 69000, 1125, 25;
85624508376, 1485395280, 19994688, 223560, 2376, 36;
...
-
{T(n,k)=local(P=matrix(n+1,n+1,r,c,if(r>=c,(r^3)^(r-c)/(r-c)!)), D=matrix(n+1,n+1,r,c,if(r==c,r)));if(n>=k,(P^-1*D^2*P)[n+1,k+1])}
Showing 1-7 of 7 results.
Comments