Original entry on oeis.org
1, 3, 24, 328, 6427, 164765, 5228210, 197897582, 8704544263, 436312502297, 24550259053858, 1532241939881294, 105048412352334420, 7847739530288388636, 634523723233529394594, 55206024491463561241758, 5142697402316326354705599, 510704188733699181740089521, 53858874208665420063477867788
Offset: 1
- Valery A. Liskovets, The number of initially connected automata, Kibernetika, (Kiev), No3 (1969), 16-19; Engl. transl.: Cybernetics, v.4 (1969), 259-262.
-
b[n_] := b[n] = If[n == 1, 1, n^(2*n)/(n-1)! - Sum[n^(2*(n-i))*b[i]/(n-i)!, {i, 1, n-1}]];
a[n_] := b[n]/n^2;
Array[a, 16] (* Jean-François Alcover, Aug 28 2019 *)
Original entry on oeis.org
1, 12, 216, 5248, 160675, 5931540, 256182290, 12665445248, 705068085303
Offset: 1
A006690
Number of deterministic, completely-defined, initially-connected finite automata with 3 inputs and n unlabeled states.
Original entry on oeis.org
1, 56, 7965, 2128064, 914929500, 576689214816, 500750172337212, 572879126392178688, 835007874759393878655, 1510492370204314777345000, 3320470273536658970739763334, 8718034433102107344888781813632, 26945647825926481227016730431025962, 96843697086370972449408988324175689680
Offset: 1
- R. Bacher and C. Reutenauer, The number of right ideals of given codimension over a finite field, in Noncommutative Birational Geometry, Representations and Combinatorics, edited by Arkady. Berenstein and Vladimir. Retakha, Contemporary Mathematics, Vol. 592, 2013.
- V. A. Liskovets, The number of initially connected automata, Kibernetika, (Kiev), No3 (1969), 16-19; Engl. transl.: Cybernetics, v.4 (1969), 259-262.
- R. Reis, N. Moreira and M. Almeida, On the Representation of Finite Automata, in Proocedings of 7th Int. Workshop on Descriptional Complexity of Formal Systems (DCFS05) Jun 30, 2005, Como, Italy, page 269-276
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- M. Almeida, N. Moreira and R. Reis, On the Representation of Finite Automata, Technical Report DCC-2005-04, DCC - FC & LIACC, Universidade do Porto, April, 2005.
- M. Almeida, N. Moreira, R. Reis, Enumeration and generation with a string automata representation, Theor. Comp. Sci. 387 (2007), 93-102; see B(k=3,n).
- Valery A. Liskovets, The number of connected initial automata, Kibernetika (Kiev), 3 (1969), 16-19 (in Russian; English translation: Cybernetics, 4 (1969), 259-262).
- Valery A. Liskovets, Exact enumeration of acyclic automata, Proc. 15th Conf. "Formal Power Series and Algebr. Combin. (FPSAC'03)", 2003.
- Valery A. Liskovets, Exact enumeration of acyclic deterministic automata, Discrete Appl. Math., 154, No. 3 (2006), 537-551.
- Robert W. Robinson, Counting strongly connected finite automata, pages 671-685 in "Graph theory with applications to algorithms and computer science." Proceedings of the fifth international conference held at Western Michigan University, Kalamazoo, Mich., June 4-8, 1984. Edited by Y. Alavi, G. Chartrand, L. Lesniak [L. M. Lesniak-Foster], D. R. Lick and C. E. Wall. A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1985. xv+810 pp. ISBN: 0-471-81635-3; Math Review MR0812651. (86g:05026). [Annotated scanned copy, with permission of the author.]
-
b := proc(k,n)
option remember;
if n = 1 then
1;
else
n^(k*n) -add(binomial(n-1,j-1)*n^(k*(n-j))*procname(k,j),j=1..n-1) ;
end if;
end proc:
B := proc(k,n)
b(k,n)/(n-1)! ;
end proc:
A006690 := proc(n)
B(3,n) ;
end proc:
seq(A006690(n),n=1..10) ; # R. J. Mathar, May 21 2018
-
a[1] = 1; a[n_] := a[n] = n^(3*n)/(n-1)! - Sum[n^(3*(n-i))*a[i]/(n-i)!, {i, 1, n-1}]; Table[a[n], {n, 1, 11}] (* Jean-François Alcover, Dec 15 2014 *)
-
{a(n)=local(P=matrix(n+1,n+1,r,c,if(r>=c,(r^3)^(r-c)/(r-c)!)), D=matrix(n+1,n+1,r,c,if(r==c,r)));(P^-1*D^3*P)[n+1,1]} \\ Paul D. Hanna, Jun 07 2005
-
A6690=[1];A006690(n)={for(n=#A6690+1,n,A6690=concat(A6690,n^(3*n)/(n-1)!-sum(k=1,n-1,n^(3*k)*A6690[n-k]/k!)));A6690[n]} \\ M. F. Hasler, May 16 2018
A006691
Normalized number of connected (n+1)-state finite automata with 2 inputs.
Original entry on oeis.org
9, 148, 3493, 106431, 3950832, 172325014, 8617033285, 485267003023, 30363691715629, 2088698040637242, 156612539215405732, 12709745319947141220, 1109746209390479579732, 103724343230007402591558, 10332348604630683943445797, 1092720669631704348689818959, 122274820828415241343176467043
Offset: 1
- Robert W. Robinson, Counting strongly connected finite automata, pages 671-685 in "Graph theory with applications to algorithms and computer science." Proceedings of the fifth international conference held at Western Michigan University, Kalamazoo, Mich., June 4-8, 1984. Edited by Y. Alavi, G. Chartrand, L. Lesniak [L. M. Lesniak-Foster], D. R. Lick and C. E. Wall. A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1985. xv+810 pp. ISBN: 0-471-81635-3; Math Review MR0812651 (86g:05026).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Hugo Pfoertner, Table of n, a(n) for n = 1..200
- Valery A. Liskovets [ Liskovec ], Enumeration of nonisomorphic strongly connected automata, (in Russian); Vesti Akad. Nauk. Belarus. SSR, Ser. Phys.-Mat., No. 3, 1971, pp. 26-30, esp. p. 30 (Math. Rev. 46 #5081; Zentralblatt 224 #94053).
- Valery A. Liskovets [ Liskovec ], A general enumeration scheme for labeled graphs, (in Russian); Dokl. Akad. Nauk. Belarus. SSR, Vol. 21, No. 6 (1977), pp. 496-499 (Math. Rev. 58 #21797; Zentralblatt 412 #05052).
- R. W. Robinson, Counting strongly connected finite automata, pages 671-685 in "Graph theory with applications to algorithms and computer science." Proceedings of the fifth international conference held at Western Michigan University, Kalamazoo, Mich., June 4-8, 1984. Edited by Y. Alavi, G. Chartrand, L. Lesniak [L. M. Lesniak-Foster], D. R. Lick and C. E. Wall. A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1985. xv+810 pp. ISBN: 0-471-81635-3; Math Review MR0812651. (86g:05026). [Annotated scanned copy, with permission of the author.]
-
v[r_, n_] := v[r, n] = If[n == 0, 1, n^(r*n) - Sum[Binomial[n, t] * n^(r*(n - t)) * v[r, t] , {t, 1, n - 1}]];
s[r_, n_] := s[r, n] = v[r, n] + Sum[Binomial[n - 1, t - 1] * v[r, n - t] * s[r, t], {t, 1, n - 1}]
A027834[n_] := s[2, n];
a[n_] := A027834[n + 1]/n!;
Array[a, 28] (* Jean-François Alcover, Aug 27 2019 *)
Name edited by
Petros Hadjicostas, Feb 26 2021 to agree with Robinson's and Liskovets' papers.
A107667
Triangular matrix T, read by rows, that satisfies: T = D + SHIFT_LEFT(T^2) where SHIFT_LEFT shifts each row 1 place to the left and D is the diagonal matrix {1, 2, 3, ...}.
Original entry on oeis.org
1, 4, 2, 45, 9, 3, 816, 112, 16, 4, 20225, 2200, 225, 25, 5, 632700, 58176, 4860, 396, 36, 6, 23836540, 1920163, 138817, 9408, 637, 49, 7, 1048592640, 75683648, 4886464, 290816, 16576, 960, 64, 8, 52696514169, 3460349970, 203451912, 10948203, 553473
Offset: 0
Reverse of rows form the initial terms of g.f.s below.
Row n=0: 1 = 1*(1-x) + 1*x*(1-x) + ...
Row n=1: 2 = 2*(1-2*x) + 4*x*(1-2*x)*(1-x) + 12*x^2*(1-2*x)*(1-x) + ...
Row n=2: 3 = 3*(1-3*x) + 9*x*(1-3*x)*(1-2*x)
+ 45*x^2*(1-3*x)*(1-2*x)*(1-x)
+ 216*x^3*(1-3*x)*(1-2*x)*(1-x) + ...
Row n=3: 4 = 4*(1-4*x) + 16*x*(1-4*x)*(1-3*x)
+ 112*x^2*(1-4*x)*(1-3*x)*(1-2*x)
+ 816*x^3*(1-4*x)*(1-3*x)*(1-2*x)*(1-x)
+ 5248*x^4*(1-4*x)*(1-3*x)*(1-2*x)*(1-x) + ...
Triangle T begins:
1;
4, 2;
45, 9, 3;
816, 112, 16, 4;
20225, 2200, 225, 25, 5;
632700, 58176, 4860, 396, 36, 6;
23836540, 1920163, 138817, 9408, 637, 49, 7;
1048592640, 75683648, 4886464, 290816, 16576, 960, 64, 8;
...
The matrix square T^2 shifts each row right 1 place, dropping the diagonal D and putting A006689 in column 0:
1;
12, 4;
216, 45, 9;
5248, 816, 112, 16;
160675, 20225, 2200, 225, 25;
5931540, 632700, 58176, 4860, 396, 36;
256182290, 23836540, 1920163, 138817, 9408, 637, 49;
...
-
a = [[sum [a!!n!!i * a!!i!!(k+1) | i<-[k+1..n]] | k <- [0..n-1]] ++ [fromIntegral n+1] | n <- [0..]]
-
{T(n,k)=local(P=matrix(n+1,n+1,r,c,if(r>=c,(r^2)^(r-c)/(r-c)!)), D=matrix(n+1,n+1,r,c,if(r==c,r)));if(n>=k,(P^-1*D*P)[n+1,k+1])}
A027834
Number of labeled strongly connected n-state 2-input automata.
Original entry on oeis.org
1, 9, 296, 20958, 2554344, 474099840, 124074010080, 43429847756400, 19565965561887360, 11018376449767451520, 7579467449864423769600, 6251471405353507523097600, 6087988343847192559805952000, 6910412728595671664966422425600, 9042510998634333921282477985689600
Offset: 1
- Hugo Pfoertner, Table of n, a(n) for n = 1..200
- Michael A. Harrison, A census of finite automata, Canadian Journal of Mathematics, 17 (1965), 100-113.
- Valery A. Liskovets [ Liskovec ], Enumeration of nonisomorphic strongly connected automata, (in Russian); Vesti Akad. Nauk. Belarus. SSR, Ser. Phys.-Mat., No. 3, 1971, pp. 26-30, esp. p. 30 (Math. Rev. 46 #5081; Zentralblatt 224 #94053).
- Valery A. Liskovets [ Liskovec ], A general enumeration scheme for labeled graphs, (in Russian); Dokl. Akad. Nauk. Belarus. SSR, Vol. 21, No. 6 (1977), pp. 496-499 (Math. Rev. 58 #21797; Zentralblatt 412 #05052).
- Robert W. Robinson, Counting strongly connected finite automata, in: Graph Theory with Applications to Graph Theory and Computer Science, Wiley, 1985, pp. 671-685.
-
v[r_, n_] := If[n == 0, 1, n^(r*n) - Sum[Binomial[n, t] * n^(r*(n - t)) * v[r, t], {t, 1, n - 1}]];
s[r_, n_] := v[r, n] + Sum[Binomial[n - 1, t - 1] * v[r, n - t] * s[r, t], {t, 1, n - 1}];
a[n_] := s[2, n];
Array[a, 15] (* Jean-François Alcover, Aug 27 2019, from PARI *)
-
/* a(n) = s_2(n) using a formula (Th.2) of Valery Liskovets: */
{v(r,n) = if(n==0,1, n^(r*n) - sum(t=1,n-1, binomial(n,t) * n^(r*(n-t)) * v(r,t) ))}
{s(r,n) = v(r,n) + sum(t=1,n-1, binomial(n-1,t-1) * v(r,n-t) * s(r,t) )}
for(n=1,20,print1( s(r=2, n),", ")) \\ Paul D. Hanna, May 16 2018
A342202
T(n,k) = V(n,k)/k!, where V(n,k) = k^(n*k) - Sum_{t=1..k-1} binomial(k,t)*k^(n*(k-t))*V(n,t) for n, k >= 1; square array T read by upwards antidiagonals.
Original entry on oeis.org
1, 1, 0, 1, 4, 0, 1, 24, 45, 0, 1, 112, 2268, 816, 0, 1, 480, 76221, 461056, 20225, 0, 1, 1984, 2245320, 152978176, 160977375, 632700, 0, 1, 8064, 62858025, 43083161600, 673315202500, 85624508376, 23836540, 0, 1, 32512, 1723364748, 11442561314816, 2331513459843750, 5508710472669120, 64363893844726, 1048592640, 0
Offset: 1
Square array T(n,k) (n, k >= 1) begins:
1, 0, 0, 0, 0, ...
1, 4, 45, 816, 20225, ...
1, 24, 2268, 461056, 160977375, ...
1, 112, 76221, 152978176, 673315202500, ...
1, 480, 2245320, 43083161600, 2331513459843750, ...
1, 1984, 62858025, 11442561314816, 7570813415735296875, ...
...
- Michael A. Harrison, A census of finite automata, Canadian Journal of Mathematics, 17 (1965), 100-113.
- Valery A. Liskovets [ Liskovec ], Enumeration of nonisomorphic strongly connected automata, (in Russian); Vesti Akad. Nauk. Belarus. SSR, Ser. Phys.-Mat., No. 3, 1971, pp. 26-30, esp. p. 30 (Math. Rev. 46 #5081; Zentralblatt 224 #94053).
- Valery A. Liskovets [ Liskovec ], A general enumeration scheme for labeled graphs, (in Russian); Dokl. Akad. Nauk. Belarus. SSR, Vol. 21, No. 6 (1977), pp. 496-499 (Math. Rev. 58 #21797; Zentralblatt 412 #05052).
- Michel Marcus, PARI program that implements the formula for T(n,k) that involves compositions of k, 2021.
- Robert W. Robinson, Counting strongly connected finite automata, in: Graph Theory with Applications to Graph Theory and Computer Science, Wiley, 1985, pp. 671-685.
-
/* The recurrence for V(n,k) is due to Valery A. Liskovets. See his 1971 paper. A second program that implements the formula above involving the compositions of k appears in the links and was written by Michel Marcus. */
V(n,k) = k^(n*k) - sum(t=1, k-1, binomial(k, t)*k^(n*(k-t))*V(n,t));
T(n,k) = V(n,k)/k!
A006692
Number of connected n-state finite automata with 3 inputs.
Original entry on oeis.org
49, 6877, 1854545, 807478656, 514798204147, 451182323794896, 519961864703259753, 762210147961330421167, 1384945048774500147047194, 3055115321627096660341307614, 8043516699726480852467167758419, 24915939138210507189761922944830006, 89709850983809128394441772076036629240
Offset: 1
- Robert W. Robinson, Counting strongly connected finite automata, pages 671-685 in "Graph theory with applications to algorithms and computer science." Proceedings of the fifth international conference held at Western Michigan University, Kalamazoo, Mich., June 4-8, 1984. Edited by Y. Alavi, G. Chartrand, L. Lesniak [L. M. Lesniak-Foster], D. R. Lick and C. E. Wall. A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1985. xv+810 pp. ISBN: 0-471-81635-3; Math Review MR0812651 (86g:05026).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Hugo Pfoertner, Table of n, a(n) for n = 1..200
- R. W. Robinson, Counting strongly connected finite automata, pages 671-685 in "Graph theory with applications to algorithms and computer science." Proceedings of the fifth international conference held at Western Michigan University, Kalamazoo, Mich., June 4-8, 1984. Edited by Y. Alavi, G. Chartrand, L. Lesniak [L. M. Lesniak-Foster], D. R. Lick and C. E. Wall. A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1985. xv+810 pp. ISBN: 0-471-81635-3; Math Review MR0812651. (86g:05026). [Annotated scanned copy, with permission of the author.]
A027835
Number of unlabeled strongly connected n-state 2-input automata.
Original entry on oeis.org
1, 6, 52, 892, 21291, 658885, 24617866, 1077142765, 53918557215, 3036369842197, 189881640057942, 13051044976503663, 977672716919010876, 79267586388173032966, 6914956215333832011058, 645771787789692953182732, 64277686448923785217048191, 6793045601578652098886514581, 759656437858515775195264228768, 89619947709601175930862298926038
Offset: 1
- Michael A. Harrison, A census of finite automata, Canadian Journal of Mathematics, 17 (1965), 100-113.
- Valery A. Liskovets [ Liskovec ], Enumeration of nonisomorphic strongly connected automata, (in Russian); Vesti Akad. Nauk. Belarus. SSR, Ser. Phys.-Mat., No. 3, 1971, pp. 26-30, esp. p. 30 (Math. Rev. 46 #5081; Zentralblatt 224 #94053).
- Valery A. Liskovets [ Liskovec ], A general enumeration scheme for labeled graphs, (in Russian); Dokl. Akad. Nauk. Belarus. SSR, Vol. 21, No. 6 (1977), pp. 496-499 (Math. Rev. 58 #21797; Zentralblatt 412 #05052).
-
{v(r, n) = if(n==0, 1, n^(r*n) - sum(t=1, n-1, binomial(n, t) * n^(r*(n-t)) * v(r, t) ))}
{s(r, n) = v(r, n) + sum(t=1, n-1, binomial(n-1, t-1) * v(r, n-t) * s(r, t) )} \\ This is Paul D. Hanna's PARI program from A027834 regarding s(r,n) = number of labeled strongly connected n-state r-input automata.
{SS(r,n) = (1/n)*sumdiv(n, m, (s(r,m)/(m-1)!)*sumdiv(n/m, d, moebius(n/(m*d))*d^((r-1)*m+1)))} \\ This calculates the number of unlabeled strongly connected n-state r-input automata. It is Valery A. Liskovets's formula from his 1971 paper.
for(n=1, 20, print1( SS(r=2, n), ", ")) \\ Petros Hadjicostas, Feb 26 2021
More terms from
Petros Hadjicostas, Feb 26 2021 using formula (5), p. 28, in Liskovets (1971)
Original entry on oeis.org
1, 12, 4, 216, 45, 9, 5248, 816, 112, 16, 160675, 20225, 2200, 225, 25, 5931540, 632700, 58176, 4860, 396, 36, 256182290, 23836540, 1920163, 138817, 9408, 637, 49, 12665445248, 1048592640, 75683648, 4886464, 290816, 16576, 960, 64
Offset: 0
Triangle T(n,k) (with rows n >= 0 and columns k = 0..n) begins:
1;
12, 4;
216, 45, 9;
5248, 816, 112, 16;
160675, 20225, 2200, 225, 25;
5931540, 632700, 58176, 4860, 396, 36;
256182290, 23836540, 1920163, 138817, 9408, 637, 49;
...
-
{T(n,k)=local(P=matrix(n+1,n+1,r,c,if(r>=c,(r^2)^(r-c)/(r-c)!)), D=matrix(n+1,n+1,r,c,if(r==c,r)));if(n>=k,(P^-1*D^2*P)[n+1,k+1])}
Showing 1-10 of 11 results.
Comments