cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A107675 Column 0 of triangle A107674.

Original entry on oeis.org

1, 24, 2268, 461056, 160977375, 85624508376, 64363893844726, 64928246784463872, 84623205378726331245, 138408056280920732755000, 277597038523589348539241112, 670011760601512512626484887040
Offset: 0

Views

Author

Paul D. Hanna, Jun 07 2005

Keywords

Comments

The o.g.f. A(x) = Sum_{m >= 0} a(m)*x^m is such that, for each integer n > 0, the coefficient of x^n in the expansion of exp(n^3*x)*(1 - x*A(x)) is equal to 0.
Given the o.g.f. A(x), the o.g.f. of A304323 equals 1/(1 - x*A(x)).

Examples

			O.g.f.: A(x) = 1 + 24*x + 2268*x^2 + 461056*x^3 + 160977375*x^4 + 85624508376*x^5 + 64363893844726*x^6 + 64928246784463872*x^7 + ...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(P=matrix(n+1,n+1,r,c,if(r>=c,(r^3)^(r-c)/(r-c)!)), D=matrix(n+1,n+1,r,c,if(r==c,r)));(P^-1*D^2*P)[n+1,1]}
    for(n=0,20, print1(a(n),", "))
    
  • PARI
    /* From formula: [x^n] exp( n^3*x ) * (1 - x*A(x)) = 0 */
    {a(n) = my(A=[1]); for(i=0, n, A=concat(A, 0); m=#A; A[m] = Vec( exp(x*m^3 +x^2*O(x^m)) * (1 - x*Ser(A)) )[m+1] ); A[n+1]}
    for(n=0, 25, print1( a(n), ", ")) \\ Paul D. Hanna, May 12 2018
    
  • PARI
    /* From Recurrence: */
    {a(n) = if(n==0,1, (n+1)^(3*n+3)/(n+1)! - sum(k=1,n, (n+1)^(3*k)/k! * a(n-k) ))}
    for(n=0,25, print1( a(n),", ")) \\ Paul D. Hanna, May 12 2018

Formula

O.g.f. A(x) satisfies: [x^n] exp(n^3*x) * (1 - x*A(x)) = 0 for n > 0. - Paul D. Hanna, May 12 2018
a(n) = (n+1)^(3*n+3)/(n+1)! - Sum_{k=1..n} (n+1)^(3*k)/k! * a(n-k) for n > 0 with a(0) = 1. - Paul D. Hanna, May 12 2018
a(n) = A342202(3,n+1) = Sum_{r=1..(n+1)} (-1)^(r-1) * Sum_{s_1, ..., s_r} (1/(Product_{j=1..r} s_j!)) * Product_{j=1..r} (Sum_{i=1..j} s_i)^(3*s_j)), where the second sum is over lists (s_1, ..., s_r) of positive integers s_i such that Sum_{i=1..r} s_i = n+1. (Thus the second sum is over all compositions of n+1. See Michel Marcus's PARI program in A342202.) - Petros Hadjicostas, Mar 10 2021

A107671 Triangular matrix T, read by rows, that satisfies: T = D + SHIFT_LEFT(T^3), where SHIFT_LEFT shifts each row 1 place to the left and D is the diagonal matrix {1, 2, 3, ...}.

Original entry on oeis.org

1, 8, 2, 513, 27, 3, 81856, 2368, 64, 4, 23846125, 469625, 7625, 125, 5, 10943504136, 160767720, 1898856, 19656, 216, 6, 7250862593527, 83548607478, 776598305, 6081733, 43561, 343, 7, 6545029128786432, 61068815111168, 465690017280, 2966844928, 16494080, 86528, 512, 8
Offset: 0

Views

Author

Paul D. Hanna, Jun 07 2005

Keywords

Examples

			Triangle T begins:
              1;
              8,           2;
            513,          27,         3;
          81856,        2368,        64,       4;
       23846125,      469625,      7625,     125,     5;
    10943504136,   160767720,   1898856,   19656,   216,   6;
  7250862593527, 83548607478, 776598305, 6081733, 43561, 343, 7;
  ...
The matrix cube T^3 shifts each row to the right 1 place, dropping the diagonal D and putting A006690 in column 0:
             1;
            56,           8;
          7965,         513,        27;
       2128064,       81856,      2368,      64;
     914929500,    23846125,    469625,    7625,  125;
  576689214816, 10943504136, 160767720, 1898856, 19656, 216;
  ...
From _Petros Hadjicostas_, Mar 11 2021: (Start)
We illustrate the above formula for T(n,k=0) with the compositions of n + 1 for n = 2. The compositions of n + 1 = 3 are 3, 1 + 2, 2 + 1, and 1 + 1 + 1.  Thus the above sum has four terms with (r = 1, s_1 = 3), (r = 2, s_1 = 1, s_2 = 2), (r = 2, s_1 = 2, s_2 = 1), and (r = 3, s_1 = s_2 = s_3 = 1).
The value of the denominator Product_{j=1..r} s_j! for these four terms is 6, 2, 2, and 1, respectively.
The value of the numerator s_1^(-1)*Product_{j=1..r} (Sum_{i=1..j} s_i)^(3*s_j) for these four terms is 19683/3, 729/1, 1728/2, and 216/1.
Thus T(2,0) = (19683/3)/6 - (729/1)/2 - (1728/2)/2 + (216/1)/1 = 513. (End)
		

Crossrefs

Cf. A107667, A107672 (column 0), A107673, A107674 (matrix square), A107676 (matrix cube), A006690.

Programs

  • PARI
    {T(n,k)=local(P=matrix(n+1,n+1,r,c,if(r>=c,(r^3)^(r-c)/(r-c)!)), D=matrix(n+1,n+1,r,c,if(r==c,r)));if(n>=k,(P^-1*D*P)[n+1,k+1])}

Formula

Matrix diagonalization method: define the triangular matrix P by P(n, k) = ((n+1)^3)^(n-k)/(n-k)! for n >= k >= 0 and the diagonal matrix D(n, n) = n+1 for n >= 0; then T is given by T = P^-1*D*P.
T(n,k=0) = Sum_{r=1..(n+1)} (-1)^(r-1) * Sum_{s_1, ..., s_r} (s_1^(-1)/(Product_{j=1..r} s_j!)) * Product_{j=1..r} (Sum_{i=1..j} s_i)^(3*s_j)), where the second sum is over lists (s_1, ..., s_r) of positive integers s_i such that Sum_{i=1..r} s_i = n + 1. (Thus, the second sum is over all compositions of n + 1.) - Petros Hadjicostas, Mar 11 2021

A107676 Matrix cube of triangle A107671.

Original entry on oeis.org

1, 56, 8, 7965, 513, 27, 2128064, 81856, 2368, 64, 914929500, 23846125, 469625, 7625, 125, 576689214816, 10943504136, 160767720, 1898856, 19656, 216, 500750172337212, 7250862593527, 83548607478, 776598305, 6081733, 43561, 343
Offset: 0

Views

Author

Paul D. Hanna, Jun 07 2005

Keywords

Comments

Column 0 is A006690.

Examples

			Triangle begins:
1;
56,8;
7965,513,27;
2128064,81856,2368,64;
914929500,23846125,469625,7625,125;
576689214816,10943504136,160767720,1898856,19656,216; ...
which equals the matrix cube of triangle A107671:
1;
8,2;
513,27,3;
81856,2368,64,4;
23846125,469625,7625,125,5;
10943504136,160767720,1898856,19656,216,6; ...
		

Crossrefs

Programs

  • PARI
    {T(n,k)=local(P=matrix(n+1,n+1,r,c,if(r>=c,(r^3)^(r-c)/(r-c)!)), D=matrix(n+1,n+1,r,c,if(r==c,r)));if(n>=k,(P^-1*D^3*P)[n+1,k+1])}

Formula

Matrix diagonalization method: define triangular matrix P by P(n, k) = ((n+1)^3)^(n-k)/(n-k)!, n>=k>=0 and diagonal matrix D(n, n) = n+1, then T is given by T = P^-1*D^3*P.
Showing 1-3 of 3 results.