cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A107669 a(n) = A107668(n)/(n+1)^2.

Original entry on oeis.org

1, 1, 5, 51, 809, 17575, 486460, 16384260, 650574249, 29762953831, 1541719486081, 89201504309927, 5702038255950404, 399105271607867940, 30359621863987241460, 2494052823831234355340, 220067051126228849480649
Offset: 0

Views

Author

Paul D. Hanna, Jun 07 2005

Keywords

Crossrefs

Programs

  • PARI
    {a(n)=local(A);if(n==0,n+1,A=(n+1)*x+x*O(x^n); for(k=0,n,A+=polcoeff(A,k)*x^k*(n+1-prod(i=0,k,1+(i-n-1)*x))); polcoeff(A,n)/(n+1)^2)}

A304322 O.g.f. A(x) satisfies: [x^n] exp( n^2 * x ) / A(x) = 0 for n>0.

Original entry on oeis.org

1, 1, 5, 54, 935, 22417, 685592, 25431764, 1106630687, 55174867339, 3097872254493, 193283918695494, 13260815963831108, 991928912663646012, 80325879518096889760, 7000127337189146831092, 653156403671376068448047, 64963788042207845593775999, 6861040250464949653809027311, 766815367797924824316405828466, 90417908118862070187113849296815
Offset: 0

Views

Author

Paul D. Hanna, May 11 2018

Keywords

Comments

It is conjectured that the coefficients of o.g.f. A(x) consist entirely of integers.
Equals row 2 of table A304320.
O.g.f. A(x) = 1/(1 - x*B(x)), where B(x) is the o.g.f. of A107668.
Logarithmic derivative of o.g.f. A(x), A'(x)/A(x), equals o.g.f. of A304312.
Conjecture: given o.g.f. A(x), the coefficient of x^n in A'(x)/A(x) is the number of connected n-state finite automata with 2 inputs (A006691).

Examples

			O.g.f.: A(x) = 1 + x + 5*x^2 + 54*x^3 + 935*x^4 + 22417*x^5 + 685592*x^6 + 25431764*x^7 + 1106630687*x^8 + 55174867339*x^9 + 3097872254493*x^10 + ...
ILLUSTRATION OF DEFINITION.
The table of coefficients of x^k/k! in exp(n^2*x) / A(x) begins:
n=0: [1, -1, -8, -270, -19584, -2427000, -455544000, -120136161600, ...];
n=1: [1, 0, -9, -296, -20715, -2527704, -470405285, -123376631664, ...];
n=2: [1, 3, 0, -350, -24672, -2867256, -518870528, -133753337280, ...];
n=3: [1, 8, 55, 0, -29547, -3559056, -614943333, -153534305160, ...];
n=4: [1, 15, 216, 2674, 0, -4291704, -783235520, -187656684864, ...];
n=5: [1, 24, 567, 12880, 251541, 0, -948897125, -243358236600, ...];
n=6: [1, 35, 1216, 41634, 1372320, 38884296, 0, -295870371264, ...];
n=7: [1, 48, 2295, 109000, 5106453, 230531544, 8944955227, 0, ...];
n=8: [1, 63, 3960, 248050, 15443328, 949131144, 56257429312, 2865412167360, 0, ...]; ...
in which the main diagonal is all zeros after the initial term, illustrating that [x^n] exp( n^2*x ) / A(x) = 0 for n>=0.
LOGARITHMIC DERIVATIVE.
The logarithmic derivative of A(x) yields the o.g.f. of A304312:
A'(x)/A(x) = 1 + 9*x + 148*x^2 + 3493*x^3 + 106431*x^4 + 3950832*x^5 + 172325014*x^6 + 8617033285*x^7 + 485267003023*x^8 + 30363691715629*x^9 + ... + A304312(n)*x^n +...
INVERT TRANSFORM.
1/A(x) = 1 - x*B(x), where B(x) is the o.g.f. of A107668:
B(x) = 1 + 4*x + 45*x^2 + 816*x^3 + 20225*x^4 + 632700*x^5 + 23836540*x^6 + 1048592640*x^7 + 52696514169*x^8 + ... + A107668(n)*x^n + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0); m=#A; A[m] = Vec( exp(x*(m-1)^2 +x*O(x^m)) / Ser(A) )[m] ); A[n+1]}
    for(n=0,25, print1( a(n),", "))

Formula

a(n) ~ sqrt(1-c) * 2^(2*n - 1/2) * n^(n - 1/2) / (sqrt(Pi) * c^n * (2-c)^n * exp(n)), where c = -A226775 = -LambertW(-2*exp(-2)). - Vaclav Kotesovec, Aug 31 2020

A052200 Number of n-state, 2-symbol, d+ in {LEFT, RIGHT}, 5-tuple (q, s, q+, s+, d+) (halting or not) Turing machines.

Original entry on oeis.org

1, 64, 20736, 16777216, 25600000000, 63403380965376, 232218265089212416, 1180591620717411303424, 7958661109946400884391936, 68719476736000000000000000000, 739696442014594807059393047166976, 9711967541295580042210555933809967104, 152784834199652075368661148843397208866816
Offset: 0

Views

Author

Michael Somos, Jan 28 2000

Keywords

Comments

T in T_(n, k) is a Turing machine with n states and k symbols;
States q, q+ in set Q_n of n distinct states (plus the Halt state;)
Symbols s, s+ in set S_k of k distinct symbols (0 as the blank symbol;)
Shift direction d+ in {LEFT, RIGHT} (NONE is excluded here;)
+ suffix meaning next and q+ = f(q, s), s+ = g(q, s), d+ = h(q, s).
This sequence is computable. On the other hand, the busy beaver numbers are noncomputable, found only by examining each of the many n-state Turing machine programs' halting. - Michael Joseph Halm, Apr 29 2003
From Daniel Forgues, Jun 06 2011: (Start)
RE: Busy beaver halting Turing machines:
H in H_(n, k) is a halting* Turing machine with n states and k symbols;
* (on a blank tape, all 0's, as input)
sigma(H) is the number of non-blank symbols left on the tape by H;
s(H) is the number of steps (or shifts in our case) taken by H;
Sigma(n, k) = max {sigma(H) : H is a halting Turing machine with n states and k symbols}
S(n, k) = max {s(H) : H is a halting Turing machine with n states and k symbols}
Cf. A028444 for Sigma(n, 2), A060843 for S(n, 2). (End)
This sequence also counts machines with unreachable states, and all (up to (n-1)!) permutations of non-start states, which don't affect behavior. In contrast, A107668 only counts state graphs reaching all n states in canonical order. - John Tromp, Oct 17 2024

Examples

			a(1) = 64 = (4*1+4)^(2*1) = 8^2.
		

Crossrefs

Programs

Formula

a(n) = (4*(n+1))^(2*n).

Extensions

Entry revised by N. J. A. Sloane, Feb 08 2007
Edited by Daniel Forgues, Mar 25 2010

A107667 Triangular matrix T, read by rows, that satisfies: T = D + SHIFT_LEFT(T^2) where SHIFT_LEFT shifts each row 1 place to the left and D is the diagonal matrix {1, 2, 3, ...}.

Original entry on oeis.org

1, 4, 2, 45, 9, 3, 816, 112, 16, 4, 20225, 2200, 225, 25, 5, 632700, 58176, 4860, 396, 36, 6, 23836540, 1920163, 138817, 9408, 637, 49, 7, 1048592640, 75683648, 4886464, 290816, 16576, 960, 64, 8, 52696514169, 3460349970, 203451912, 10948203, 553473
Offset: 0

Views

Author

Paul D. Hanna, Jun 07 2005

Keywords

Examples

			Reverse of rows form the initial terms of g.f.s below.
Row n=0: 1 = 1*(1-x) + 1*x*(1-x) + ...
Row n=1: 2 = 2*(1-2*x) + 4*x*(1-2*x)*(1-x) + 12*x^2*(1-2*x)*(1-x) + ...
Row n=2: 3 = 3*(1-3*x) + 9*x*(1-3*x)*(1-2*x)
           + 45*x^2*(1-3*x)*(1-2*x)*(1-x)
           + 216*x^3*(1-3*x)*(1-2*x)*(1-x) + ...
Row n=3: 4 = 4*(1-4*x) + 16*x*(1-4*x)*(1-3*x)
           + 112*x^2*(1-4*x)*(1-3*x)*(1-2*x)
           + 816*x^3*(1-4*x)*(1-3*x)*(1-2*x)*(1-x)
           + 5248*x^4*(1-4*x)*(1-3*x)*(1-2*x)*(1-x) + ...
Triangle T begins:
           1;
           4,        2;
          45,        9,       3;
         816,      112,      16,      4;
       20225,     2200,     225,     25,     5;
      632700,    58176,    4860,    396,    36,   6;
    23836540,  1920163,  138817,   9408,   637,  49,  7;
  1048592640, 75683648, 4886464, 290816, 16576, 960, 64, 8;
  ...
The matrix square T^2 shifts each row right 1 place, dropping the diagonal D and putting A006689 in column 0:
          1;
         12,        4;
        216,       45,       9;
       5248,      816,     112,     16;
     160675,    20225,    2200,    225,   25;
    5931540,   632700,   58176,   4860,  396,  36;
  256182290, 23836540, 1920163, 138817, 9408, 637, 49;
  ...
		

Crossrefs

Cf. A006689, A107668 (column 0), A107669, A107670 (matrix square).

Programs

  • Haskell
    a = [[sum [a!!n!!i * a!!i!!(k+1) | i<-[k+1..n]] | k <- [0..n-1]] ++ [fromIntegral n+1] | n <- [0..]]
  • PARI
    {T(n,k)=local(P=matrix(n+1,n+1,r,c,if(r>=c,(r^2)^(r-c)/(r-c)!)), D=matrix(n+1,n+1,r,c,if(r==c,r)));if(n>=k,(P^-1*D*P)[n+1,k+1])}
    

Formula

Matrix diagonalization method: define the triangular matrix P by P(n, k) = ((n+1)^2)^(n-k)/(n-k)! for n >=k >= 0 and the diagonal matrix D by D(n, n) = n+1 for n >= 0; then T is given by T = P^-1*D*P.
Rows read in reverse form the initial terms of the g.f.: (n+1) = Sum_{k>=0} T(n, n-k) * x^k * Product_{j=0..k} (1-(n+1-j)*x) = T(n, n)*(1-(n+1)*x) + T(n, n-1)*x*(1-(n+1)*x)*(1-n*x) + T(n, n-2)*x^2*(1-(n+1)*x)*(1-n*x)*(1-(n-1)*x) + ... [Corrected by Petros Hadjicostas, Mar 11 2021]

A107675 Column 0 of triangle A107674.

Original entry on oeis.org

1, 24, 2268, 461056, 160977375, 85624508376, 64363893844726, 64928246784463872, 84623205378726331245, 138408056280920732755000, 277597038523589348539241112, 670011760601512512626484887040
Offset: 0

Views

Author

Paul D. Hanna, Jun 07 2005

Keywords

Comments

The o.g.f. A(x) = Sum_{m >= 0} a(m)*x^m is such that, for each integer n > 0, the coefficient of x^n in the expansion of exp(n^3*x)*(1 - x*A(x)) is equal to 0.
Given the o.g.f. A(x), the o.g.f. of A304323 equals 1/(1 - x*A(x)).

Examples

			O.g.f.: A(x) = 1 + 24*x + 2268*x^2 + 461056*x^3 + 160977375*x^4 + 85624508376*x^5 + 64363893844726*x^6 + 64928246784463872*x^7 + ...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(P=matrix(n+1,n+1,r,c,if(r>=c,(r^3)^(r-c)/(r-c)!)), D=matrix(n+1,n+1,r,c,if(r==c,r)));(P^-1*D^2*P)[n+1,1]}
    for(n=0,20, print1(a(n),", "))
    
  • PARI
    /* From formula: [x^n] exp( n^3*x ) * (1 - x*A(x)) = 0 */
    {a(n) = my(A=[1]); for(i=0, n, A=concat(A, 0); m=#A; A[m] = Vec( exp(x*m^3 +x^2*O(x^m)) * (1 - x*Ser(A)) )[m+1] ); A[n+1]}
    for(n=0, 25, print1( a(n), ", ")) \\ Paul D. Hanna, May 12 2018
    
  • PARI
    /* From Recurrence: */
    {a(n) = if(n==0,1, (n+1)^(3*n+3)/(n+1)! - sum(k=1,n, (n+1)^(3*k)/k! * a(n-k) ))}
    for(n=0,25, print1( a(n),", ")) \\ Paul D. Hanna, May 12 2018

Formula

O.g.f. A(x) satisfies: [x^n] exp(n^3*x) * (1 - x*A(x)) = 0 for n > 0. - Paul D. Hanna, May 12 2018
a(n) = (n+1)^(3*n+3)/(n+1)! - Sum_{k=1..n} (n+1)^(3*k)/k! * a(n-k) for n > 0 with a(0) = 1. - Paul D. Hanna, May 12 2018
a(n) = A342202(3,n+1) = Sum_{r=1..(n+1)} (-1)^(r-1) * Sum_{s_1, ..., s_r} (1/(Product_{j=1..r} s_j!)) * Product_{j=1..r} (Sum_{i=1..j} s_i)^(3*s_j)), where the second sum is over lists (s_1, ..., s_r) of positive integers s_i such that Sum_{i=1..r} s_i = n+1. (Thus the second sum is over all compositions of n+1. See Michel Marcus's PARI program in A342202.) - Petros Hadjicostas, Mar 10 2021

A304394 O.g.f. A(x) satisfies: [x^n] exp(n^4 * x) * (1 - x*A(x)) = 0 for n > 0.

Original entry on oeis.org

1, 112, 76221, 152978176, 673315202500, 5508710472669120, 75300988091046198131, 1595530380622638283804672, 49561200934127182294698009969, 2161539625780059763174286300310000, 127884966535158110582342524738392563401, 9979510403062963314615799917574094659938048, 1003426348756281631241586585232930123009989117616
Offset: 0

Views

Author

Paul D. Hanna, May 12 2018

Keywords

Comments

INVERT transform of A304324.
The o.g.f. A(x) = Sum_{m >= 0} a(m)*x^m is such that, for each integer n > 0, the coefficient of x^n in the expansion of exp(n^4 * x) * (1 - x*A(x)) = 0 is equal to 0.

Examples

			O.g.f.: A(x) = 1 + 112*x + 76221*x^2 + 152978176*x^3 + 673315202500*x^4 + 5508710472669120*x^5 + 75300988091046198131*x^6 + ...
		

Crossrefs

Programs

  • PARI
    /* From formula: [x^n] exp( n^4*x ) * (1 - x*A(x)) = 0 */
    {a(n) = my(A=[1]); for(i=0, n, A=concat(A, 0); m=#A; A[m] = Vec( exp(x*m^4 +x^2*O(x^m)) * (1 - x*Ser(A)) )[m+1] ); A[n+1]}
    for(n=0, 25, print1( a(n), ", "))

Formula

a(n) = (n+1)^(4*n+4)/(n+1)! - Sum_{k=1..n} (n+1)^(4*k)/k! * a(n-k) for n > 0 with a(0) = 1.
a(n) = A342202(4,n+1) = Sum_{r=1..(n+1)} (-1)^(r-1) * Sum_{s_1, ..., s_r} (1/(Product_{j=1..r} s_j!)) * Product_{j=1..r} (Sum_{i=1..j} s_i)^(4*s_j)), where the second sum is over lists (s_1, ..., s_r) of positive integers s_i such that Sum_{i=1..r} s_i = n+1. (Thus the second sum is over all compositions of n+1. See Michel Marcus's PARI program in A342202.) - Petros Hadjicostas, Mar 10 2021

A304395 O.g.f. A(x) satisfies: [x^n] exp( n^5 * x ) * (1 - x*A(x)) = 0 for n > 0.

Original entry on oeis.org

1, 480, 2245320, 43083161600, 2331513459843750, 287128730182879382976, 69929145078323834449039740, 30496052356323314014140611297280, 22113924320024426907851753695581691875, 25177421842925471123473548283955430812500000, 42994775028354266041451477298870703788676694998956, 106089234738948935762581435147478647028049918327743508480
Offset: 0

Views

Author

Paul D. Hanna, May 12 2018

Keywords

Comments

The o.g.f. A(x) = Sum_{m >= 0} a(m)*x^m is such that, for each integer n > 0, the coefficient of x^n in the expansion of exp(n^5*x) * (1 - x*A(x)) is equal to 0.

Examples

			O.g.f.: A(x) = 1 + 480*x + 2245320*x^2 + 43083161600*x^3 + 2331513459843750*x^4 + 287128730182879382976*x^5 + 69929145078323834449039740*x^6 + ...
		

Crossrefs

INVERT transform of A304325.

Programs

  • PARI
    /* From formula: [x^n] exp( n^5*x ) * (1 - x*A(x)) = 0 */
    {a(n) = my(A=[1]); for(i=0, n, A=concat(A, 0); m=#A; A[m] = Vec( exp(x*m^5 +x^2*O(x^m)) * (1 - x*Ser(A)) )[m+1] ); A[n+1]}
    for(n=0, 20, print1( a(n), ", "))

Formula

a(n) = (n+1)^(5*n+5)/(n+1)! - Sum_{k=1..n} (n+1)^(5*k)/k! * a(n-k) for n > 0 with a(0) = 1.
a(n) = A342202(5,n+1) = Sum_{r=1..(n+1)} (-1)^(r-1) * Sum_{s_1, ..., s_r} (1/(Product_{j=1..r} s_j!)) * Product_{j=1..r} (Sum_{i=1..j} s_i)^(5*s_j)), where the second sum is over lists (s_1, ..., s_r) of positive integers s_i such that Sum_{i=1..r} s_i = n+1. (Thus, the second sum is over all compositions of n+1. See Michel Marcus's PARI program in A342202.) - Petros Hadjicostas, Mar 10 2021

A342202 T(n,k) = V(n,k)/k!, where V(n,k) = k^(n*k) - Sum_{t=1..k-1} binomial(k,t)*k^(n*(k-t))*V(n,t) for n, k >= 1; square array T read by upwards antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 4, 0, 1, 24, 45, 0, 1, 112, 2268, 816, 0, 1, 480, 76221, 461056, 20225, 0, 1, 1984, 2245320, 152978176, 160977375, 632700, 0, 1, 8064, 62858025, 43083161600, 673315202500, 85624508376, 23836540, 0, 1, 32512, 1723364748, 11442561314816, 2331513459843750, 5508710472669120, 64363893844726, 1048592640, 0
Offset: 1

Views

Author

Petros Hadjicostas, Mar 04 2021

Keywords

Comments

To prove Paul D. Hanna's formula for the row n o.g.f. A(x,n) = Sum_{m >= 1} T(n,m)*x^m, we use Leibniz's rule for the k-th derivative of a product of functions: dx^k(exp(k^n*x) * (1 - A(x,n)))/dx = Sum_{s=0..k} binomial(k,s) * d^s(exp(k^n*x))/dx^s * d^(k-s) (1 - A(x,n))/dx^(k-s) = k^(n*k) * exp(k^n*x) * (1 - Sum_{m>=1} T(n,m) * x^m) - Sum_{s=0..k-1} binomial(k,s) * k^(n*s) * exp(k^n*x) * (Sum_{m>=1} (m!/(m-(k-s))!) * T(n,m) * x^(m-(k-s))). The coefficient of x^k for exp(k^n*x) * (1 - A(x,n)) is obtained by setting x = 0 in the k-the derivative, and it is equal to k^(n*k) - Sum_{s=0..k-1} binomial(k,s) * k^(n*s) * (k-s)! * T(n,k-s) = k! * (k^(n*k)/k! - Sum_{s=0..k-1} k^(n*s)/s! * T(n,k-s)) = 0 because of the recurrence that T(n,k) satisfies.
To prove the formula below for T(n,k) that involves the compositions of k, we use mathematical induction on k. For k = 1, it is obvious. Assume it is true for all n and all m < k. Consider the compositions of k.
There is only one of size r = 1, namely k, and corresponds to the term k^(n*k)/k! in the recurrence T(n,k) = k^(n*k)/k! - Sum_{s=1..k-1} k^(n*s)/s! * T(n,k-s).
For the other compositions (s_1, ..., s_r) of k (of any size r >= 2), we group them according to the their last element s_r = s in {1, 2, ..., k - 1}, which gives rise to the factor k^(n*s)/s! = (Sum_{i=1..r} s_i)^(n*s_r)/s_r!. Using the inductive hypothesis, we substitute the expression for T(n,k-s) in the recurrence T(n,k) = k^(n*k)/k! - Sum_{s=1..k-1} k^(n*s)/s! * T(n,k-s). Each term in the expression for T(n,k-s) corresponds to a composition of k - s and is postmultiplied by k^(n*s)/s! = (Sum_{i=1..r} s_i)^(n*s_r)/s_r!. We thus get a term in the expression for T(n,k) that corresponds to a composition of the form (composition of k - s) + s, and the sign of this term is (-1)^((size of composition of k - s) + 1). The rest of the proof follows easily.

Examples

			Square array T(n,k) (n, k >= 1) begins:
  1,    0,        0,              0,                   0, ...
  1,    4,       45,            816,               20225, ...
  1,   24,     2268,         461056,           160977375, ...
  1,  112,    76221,      152978176,        673315202500, ...
  1,  480,  2245320,    43083161600,    2331513459843750, ...
  1, 1984, 62858025, 11442561314816, 7570813415735296875, ...
  ...
		

Crossrefs

Cf. A027834, A027835, A059153 (shifted column 2), A342405 (column 3).
Shifted rows: A000007 (row 1), A107668 (row 2), A107675 (row 3), A304394 (row 4), A304395 (row 5).

Programs

  • PARI
    /* The recurrence for V(n,k) is due to Valery A. Liskovets. See his 1971 paper. A second program that implements the formula above involving the compositions of k appears in the links and was written by Michel Marcus. */
    V(n,k) = k^(n*k) - sum(t=1, k-1, binomial(k, t)*k^(n*(k-t))*V(n,t));
    T(n,k) = V(n,k)/k!

Formula

T(n,k) = k^(n*k)/k! - Sum_{s=1..k-1} k^(n*s)/s! * T(n,k-s).
For each n >= 1, the row n o.g.f. A(x,n) = Sum_{k >= 1} T(n,k)*x^k satisfies [x^k] (exp(k^n*x) * (1 - A(x,n))) = 0 for each k >= 1. (This is Paul D. Hanna's formula from the shifted rows 2-5: A107668, A107675, A304394, A304395.)
A027834(k) = T(2, k)*k! + Sum_{t=1..k-1} binomial(k-1, t-1) * T(2, k-t) * (k-t)! * A027834(t), where A027834(k) = number of strongly connected k-state 2-input automata. (See Theorem 2 in Valery A. Liskovets's 1971 paper.)
T(n,k) = Sum_{r=1..k} (-1)^(r-1) * Sum_{s_1, ..., s_r} (1/(Product_{j=1..r} s_j!)) * Product_{j=1..r} (Sum_{i=1..j} s_i)^(n*s_j)), where the second sum is over lists (s_1, ..., s_r) of positive integers s_i such that Sum_{i=1..r} s_i = k. (Thus the second sum is over all ordered partitions (i.e., compositions) of k.)
T(n,k=1) = 1 and T(n,k=2) = 2^n*(2^(n-1) - 1) = A059153(n-2) (with A059153(-1) := 0).
T(n,k=3) = (27^n - 3*9^n - 3*12^n)/6 + 6^n.
T(n,k=4) = 256^n/24 - (5/12)*64^n - 108^n/6 + 32^n/2 + 36^n/2 + 48^n/2 - 24^n.

A107670 Matrix square of triangle A107667.

Original entry on oeis.org

1, 12, 4, 216, 45, 9, 5248, 816, 112, 16, 160675, 20225, 2200, 225, 25, 5931540, 632700, 58176, 4860, 396, 36, 256182290, 23836540, 1920163, 138817, 9408, 637, 49, 12665445248, 1048592640, 75683648, 4886464, 290816, 16576, 960, 64
Offset: 0

Views

Author

Paul D. Hanna, Jun 07 2005

Keywords

Comments

Column 0 is A006689. See triangle A107667 for more formulas.

Examples

			Triangle T(n,k) (with rows n >= 0 and columns k = 0..n) begins:
          1;
         12,        4;
        216,       45,       9;
       5248,      816,     112,     16;
     160675,    20225,    2200,    225,   25;
    5931540,   632700,   58176,   4860,  396,  36;
  256182290, 23836540, 1920163, 138817, 9408, 637, 49;
  ...
		

Crossrefs

Cf. A107667, A107668, A107669, A006689 (column 0).

Programs

  • PARI
    {T(n,k)=local(P=matrix(n+1,n+1,r,c,if(r>=c,(r^2)^(r-c)/(r-c)!)), D=matrix(n+1,n+1,r,c,if(r==c,r)));if(n>=k,(P^-1*D^2*P)[n+1,k+1])}

Formula

Matrix diagonalization method: define the triangular matrix P by P(n, k) = ((n+1)^2)^(n-k)/(n-k)! for n >= k >= 0 and the diagonal matrix D by D(n, n) = n+1 for n >= 0; then T is given by T = P^-1*D^2*P.

A337805 Lazy Beaver Problem: a(n) is the smallest positive number of steps a(n) such that no n-state Turing machine halts in exactly a(n) steps on an initially blank tape.

Original entry on oeis.org

2, 7, 22, 72, 427
Offset: 1

Views

Author

Zachary Vance, Sep 23 2020

Keywords

Comments

This sequence and the Busy Beaver (A060843) problem are closely related. Turing machines and the number of steps taken by a Turing machine on an initially blank tape are defined in A060843.
This sequence is computable, while the Busy Beaver problem is uncomputable.
a(n) - 1 <= BB(n), where BB(n) = A060843(n).
a(n) - 1 <= A107668 * 4^(2n), the number of uniquely behaving n-state Turing machines with 2 symbols, by the pigeonhole principle.

Examples

			For n = 2, there exist 2-state Turing machines which halt in exactly {1, 2, 3, 4, 5, 6} steps (and for no other number of steps) given an initially empty input tape. a(2) = 7 is defined as the lowest positive integer not present in that set of possible step lengths.
		

Crossrefs

Known upper bounds of a(n) - 1 are A028444, A004147, and A141475.
Showing 1-10 of 10 results.